[1] ZHENG H R, WU Y, HE Q, et al. Fast and high-resolution magnetic resonance imaging on high field system[J]. Life Science Instruments, 2018, 16(Z1):29-44, 54.郑海荣, 吴垠, 贺强, 等. 基于高场磁共振的快速高分辨成像[J]. 生命科学仪器, 2018, 16(Z1):29-44, 54. [2] MCGIBNEY G, SMITH M R, NICHOLS S T, et al. Quantitative-evaluation of several partial fourier reconstruction algorithms used in MRI[J]. Magn Reson Med, 1993, 30(1):51-59. [3] PRUESSMANN K P, WEIGER M, SCHEIDEGGER M B, et al. SENSE:Sensitivity encoding for fast MRI[J]. Magn Reson Med, 1999, 42(5):952-962. [4] GRISWOLD M A, JAKOB P M, HEIDEMANN R M, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA)[J]. Magn Reson Med, 2002, 47(6):1202-1210. [5] SETSOMPOP K, GAGOSKI B A, POLIMENI J R, et al. Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty[J]. Magn Reson Med. 2012, 67(5):1210-1224. [6] LARKMAN D J, HAJNAL J V, HERLIHY A H, et al. Use of multicoil arrays for separation of signal from multiple slices simultaneously excited[J]. J Magn Reson Imaging, 2001, 13(2):313-317. [7] BREUER F A, BLAIMER M, HEIDEMANN R M, et al. Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging[J]. Magn Reson Med, 2005, 53(3):684-691. [8] NUNES R G, HAJNAL J V, GOLAY X, et al. Simultaneous slice excitation and reconstruction for single shot EPI[C]//14th Annual Meeting of ISMRM, Seattle, Washington, USA. 2006:293. [9] CHENG J, WANG H, YING L, et al. Model learning:Primal dual networks for fast MR imaging[C]. International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Oct. 13-17, 2019, Shenzhen, China. Springer, Cham, 2019:21-29. [10] WANG H, CHENG J, JIA S, et al. Accelerating MR imaging via deep Chambolle-Pock network[C]. 201941st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jul. 23-27, 2019, Berlin, Germany. IEEE, 2019:6818-6821. [11] CHENG H T, WANG S S, KE Z W, et al. A deep recursive cascaded convolutional network for parallel MRI[J]. Chinese J Magn Reson, 2019, 36(4):437-445.程慧涛, 王珊珊, 柯子文, 等. 基于深度递归级联卷积神经网络的并行磁共振成像方法[J]. 波谱学杂志, 2019, 36(4):437-445. [12] WANG H Z, ZHAO D, YANG L Q, et al. An approach for training data enrichment and batch labeling in AI+MRI aided diagnosis[J]. Chinese J Magn Reson, 2018, 35(4):447-456.汪红志, 赵地, 杨丽琴, 等. 基于AI+MRI的影像诊断的样本增广与批量标注方法[J]. 波谱学杂志, 2018, 35(4):447-456. [13] AKCAKAYA M, MOELLER S, WEINGAERTNER S, et al. Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction:Database-free deep learning for fast imaging[J]. Magn Reson Med, 2019, 81(1):439-453. [14] EO T, JUN Y, KIM T, et al. KIKI-net:cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images[J]. Magn Reson Med, 2018, 80(5):2188-2201. [15] BLAIMER M, BREUER F A, SEIBERLICH N, et al. Accelerated volumetric MRI with a SENSE/GRAPPA combination[J]. J Magn Reson Imaging, 2006, 24(2):444-450. [16] ZHANG C, MOELLER S, WEINGAERTNER S, et al. Accelerated simultaneous multi-slice MRI using subject-specific convolutional neural networks[C]. Conference Record of the Asilomar Conference on Signals Systems and Computers, Pacific Grove, CA. 2018:1636-1640. [17] BLAIMER M, GUTBERLET M, KELLMAN P, et al. Virtual coil concept for improved parallel MRI employing conjugate symmetric signals[J]. Magn Reson Med, 2009, 61(1):93-102. [18] KINGMA D P, BA J. Adam:A method for stochastic optimization[C]. International Conference on Learning Representations (ICLR), May 7-9, 2015, San Diego, USA. arXiv preprint arXiv:1412.6980, 2014. [19] SU S, LU N, JIA L, et al. High spatial resolution BOLD fMRI using simultaneous multislice excitation with echo-shifting gradient echo at 7 Tesla[J]. Magnc Reson Imaging, 2020, 66:86-92. [20] MICKEVICIUS N J, PAULSON E S, TUGAN MUFTULER L, et al. Application of a k-space interpolating artificial neural network to in-plane accelerated simultaneous multislice imaging[OL].[2019-02-01]. https://ui.adsabs.harvard.edu/abs/2019arXiv190208589M |