Chinese Journal of Magnetic Resonance ›› 2021, Vol. 38 ›› Issue (1): 69-79.doi: 10.11938/cjmr20202843
• Articles • Previous Articles Next Articles
XIN Hong-tao1,5, WU Guang-yao2,3, WEN Zhi2,4, LEI Hao1,5, LIN Fu-chun1,5
Received:
2020-07-30
Online:
2021-03-05
Published:
2020-09-04
CLC Number:
XIN Hong-tao, WU Guang-yao, WEN Zhi, LEI Hao, LIN Fu-chun. Effects of Antiretroviral Therapy on Brain Gray Matter Volumes in AIDS Patients[J]. Chinese Journal of Magnetic Resonance, 2021, 38(1): 69-79.
[1] UNAIDS. AIDS epidemic update[OL]. https://www.unaids.org/sites/default/files/media_asset/2020_aids-data-book_en.pdf. 2020. [2] DALGLEISH A G. The pathogenesis of AIDS:classical and alternative views[J]. J R Coll Physicians Lond, 1992, 26(2):152-158. [3] TSIBRIS A M, HIRSCH M S. Antiretroviral therapy in the clinic[J]. J Virol, 2010, 84(11):5458-5464. [4] PALELLA JR F J, DELANEY K M, MOORMAN A C, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV outpatient study investigators[J]. N Engl J Med, 1998, 338(13):853-860. [5] GONZÁLEZ-SCARANO F, MARTÍN-GARCÍA J. The neuropathogenesis of AIDS[J]. Nat Rev Immunol, 2005, 5(1):69-81. [6] BHASKARAN K, MUSSINI C, ANTINORI A, et al. Changes in the incidence and predictors of human immunodeficiency virus-associated dementia in the era of highly active antiretroviral therapy[J]. Ann Neurol, 2008, 63(2):213-221. [7] ELLERO J, LUBOMSKI M, BREW B. Interventions for neurocognitive dysfunction[J]. Curr HIV/AIDS Rep, 2017, 14(1):8-16. [8] ELBIRT D, MAHLAB-GURI K, BEZALEL-ROSENBERG S, et al. HIV-associated neurocognitive disorders (HAND)[J]. Isr Med Assoc J, 2015, 17(1):54-59. [9] HEATON R K, CLIFFORD D B, FRANKLIN JR D R, et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy:CHARTER Study[J]. Neurology, 2010, 75(23):2087-2096. [10] ELLIS R J, DEUTSCH R, HEATON R K, et al. Neurocognitive impairment is an independent risk factor for death in HIV infection. San diego HIV neurobehavioral research center group[J]. Arch Neurol, 1997, 54(4):416-424. [11] RAGIN A B, DU H Y, OCHS R, et al. Structural brain alterations can be detected early in HIV infection[J]. Neurology, 2012, 79(24):2328-2334. [12] WANG B, LIU Z Y, LIU J J, et al. Gray and white matter alterations in early HIV-infected patients:Combined voxel-based morphometry and tract-based spatial statistics[J]. J Magn Reson Imaging, 2016, 43(6):1474-1483. [13] RAGIN A B, WU Y, GAO Y, et al. Brain alterations within the first 100 days of HIV infection[J]. Ann Clin Transl Neurol, 2015, 2(1):12-21. [14] LI Y F, LI H J, GAO Q S, et al. Structural gray matter change early in male patients with HIV[J]. Int J Clin Exp Med, 2014, 7(10):3362-3369. [15] THOMPSON P M, DUTTON R A, HAYASHI K M, et al. Thinning of the cerebral cortex visualized in HIV/AIDS reflects CD4+T lymphocyte decline[J]. Proc Natl Acad Sci U S A, 2005, 102(43):15647-15652. [16] SANFORD R, FELLOWS L K, ANCES B M, et al. Association of brain structure changes and cognitive function with combination antiretroviral therapy in HIV-positive individuals[J]. JAMA Neurol, 2018, 75(1):72-79. [17] ANCES B M, ORTEGA M, VAIDA F, et al. Independent effects of HIV, aging, and HAART on brain volumetric measures[J]. J Acquir Immune Defic Syndr, 2012, 59(5):469-477. [18] UNDERWOOD J, COLE J H, CAAN M, et al. Gray and white matter abnormalities in treated human immunodeficiency virus disease and their relationship to cognitive function[J]. Clin Infect Dis, 2017, 65(3):422-432. [19] TESIC T, BOBAN J, BJELAN M, et al. Basal ganglia shrinkage without remarkable hippocampal atrophy in chronic aviremic HIV-positive patients[J]. J Neurovirol, 2018, 24(4):478-487. [20] CLIFFORD K M, SAMBOJU V, COBIGO Y, et al. Progressive brain atrophy despite persistent viral suppression in HIV patients older than 60 years[J]. J Acquir Immune Defic Syndr, 2017, 76(3):289-297. [21] VAN ZOEST R A, UNDERWOOD J, DE FRANCESCO D, et al. Structural brain abnormalities in successfully treated HIV infection:associations with disease and cerebrospinal fluid biomarkers[J]. J Infect Dis, 2017, 217(1):69-81. [22] NIR T M, JAHANSHAD N, CHING C R K, et al. Progressive brain atrophy in chronically infected and treated HIV+individuals[J]. J Neurovirol, 2019, 25(3):342-353. [23] CARDENAS V A, MEYERHOFF D J, STUDHOLME C, et al. Evidence for ongoing brain injury in human immunodeficiency virus-positive patients treated with antiretroviral therapy[J]. J Neurovirol, 2009, 15(4):324-333. [24] CORRÊA D G, ZIMMERMANN N, TUKAMOTO G, et al. Longitudinal assessment of subcortical gray matter volume, cortical thickness, and white matter integrity in HIV-positive patients[J]. J Magn Reson Imaging, 2016, 44(5):1262-1269. [25] CORRÊA D G, ZIMMERMANN N, VENTURA N, et al. Longitudinal evaluation of resting-state connectivity, white matter integrity and cortical thickness in stable HIV infection:Preliminary results[J]. Neuroradiol J, 2017, 30(6):535-545. [26] SANFORD R, ANCES B M, MEYERHOFF D J, et al. Longitudinal trajectories of brain volume and cortical thickness in treated and untreated primary human immunodeficiency virus infection[J]. Clin Infect Dis, 2018, 67(11):1697-1704. [27] CHANG L, SHUKLA D K. Imaging studies of the HIV-infected brain[J]. Handb Clin Neurol, 2018, 152:229-264. [28] DAHNKE R, YOTTER R A, GASER C. Cortical thickness and central surface estimation[J]. Neuroimage, 2013, 65:336-348. [29] ASHBURNER J, FRISTON K J. Unified segmentation[J]. Neuroimage, 2005, 26(3):839-851. [30] CAI W Q, WANG Y J. Advances in construction of human brain atlases from magnetic resonance images[J]. Chinese J Magn Reson, 2020, 37(2):241-453.蔡文琴,王远军.基于磁共振成像的人脑图谱构建方法研究进展[J].波谱学杂志, 2020, 37(2):241-253. [31] CASTELO J M, COURTNEY M G, MELROSE R J, et al. Putamen hypertrophy in nondemented patients with human immunodeficiency virus infection and cognitive compromise[J]. Arch Neurol, 2007, 64(9):1275-1280. [32] HEAPS J M, SITHINAMSUWAN P, PAUL R, et al. Association between brain volumes and HAND in cART-naïve HIV+individuals from Thailand[J]. J Neurovirol, 2015, 21(2):105-112. [33] WILSON T W, HEINRICHS-GRAHAM E, BECKER K M, et al. Multimodal neuroimaging evidence of alterations in cortical structure and function in HIV-infected older adults[J]. Hum Brain Mapp, 2015, 36(3):897-910. [34] CORRÊA D G, ZIMMERMANN N, NETTO T M, et al. Regional cerebral gray matter volume in HIV-positive patients with executive function deficits[J]. J Neuroimaging, 2016, 26(4):450-457. [35] KÜPER M, RABE K, ESSER S, et al. Structural gray and white matter changes in patients with HIV[J]. J Neurol, 2011, 258(6):1066-1075. [36] BECKER J T, MARUCA V, KINGSLEY L A, et al. Factors affecting brain structure in men with HIV disease in the post-HAART era[J]. Neuroradiology, 2012, 54(2):113-121. [37] ZHOU Y W, LI R L, WANG X X, et al. Motor-related brain abnormalities in HIV-infected patients:a multimodal MRI study[J]. Neuroradiology, 2017, 59(11):1133-1142. [38] ABE H, MEHRAEIN P, WEIS S. Degeneration of the cerebellar dentate nucleus and the inferior olivary nuclei in HIV-1-infected brains:a morphometric analysis[J]. Acta Neuropathol, 1996, 92(2):150-155. [39] KLUNDER A D, CHIANG M C, DUTTON R A, et al. Mapping cerebellar degeneration in HIV/AIDS[J]. Neuroreport, 2008, 19(17):1655-1659. [40] TOWGOOD K J, PITKANEN M, KULASEGARAM R, et al. Mapping the brain in younger and older asymptomatic HIV-1 men:frontal volume changes in the absence of other cortical or diffusion tensor abnormalities[J]. Cortex, 2012, 48(2):230-241. [41] WILEY C A, MASLIAH E, MOREY M, et al. Neocortical damage during HIV infection[J]. Ann Neurol, 1991, 29(6):651-657. [42] VALCOUR V, CHALERMCHAI T, SAILASUTA N, et al. Central nervous system viral invasion and inflammation during acute HIV infection[J]. J Infect Dis, 2012, 206(2):275-282. [43] GRAY F, SCARAVILLI F, EVERALL I, et al. Neuropathology of early HIV-1 infection[J]. Brain Pathol, 1996, 6(1):1-15. [44] OZDENER H. Molecular mechanisms of HIV-1 associated neurodegeneration[J]. J Biosci, 2005, 30(3):391-405. [45] SARMA M K, NAGARAJAN R, KELLER M A, et al. Regional brain gray and white matter changes in perinatally HIV-infected adolescents[J]. Neuroimage Clin, 2014, 4:29-34. [46] HINKIN C H, VAN GORP W G, MANDELKERN M A, et al. Cerebral metabolic change in patients with AIDS:report of a six-month follow-up using positron-emission tomography[J]. J Neuropsychiatry Clin Neurosci, 1995, 7(2):180-187. [47] ROTTENBERG D A, MOELLER J R, STROTHER S C, et al. The metabolic pathology of the AIDS dementia complex[J]. Ann Neurol, 1987, 22(6):700-706. [48] ROTTENBERG D A, SIDTIS J J, STROTHER S C, et al. Abnormal cerebral glucose metabolism in HIV-1 seropositive subjects with and without dementia[J]. J Nucl Med, 1996, 37(7):1133-1141. [49] VAN GORP W G, MANDELKERN M A, GEE M, et al. Cerebral metabolic dysfunction in AIDS:findings in a sample with and without dementia[J]. J Neuropsychiatry Clin Neurosci, 1992, 4(3):280-287. [50] VON GIESEN H J, ANTKE C, HEFTER H, et al. Potential time course of human immunodeficiency virus type 1-associated minor motor deficits:electrophysiologic and positron emission tomography findings[J]. Arch Neurol, 2000, 57(11):1601-1607. [51] HUA X, BOYLE C P, HAREZLAK J, et al. Disrupted cerebral metabolite levels and lower nadir CD4+counts are linked to brain volume deficits in 210 HIV-infected patients on stable treatment[J]. Neuroimage Clin, 2013, 3:132-142. [52] KAUL M, GARDEN G A, LIPTON S A. Pathways to neuronal injury and apoptosis in HIV-associated dementia[J]. Nature, 2001, 410(6831):988-994. [53] MATTSON M P, HAUGHEY N J, Nath A. Cell death in HIV dementia[J]. Cell Death Differ, 2005, 12(Suppl 1):893-904. [54] ZHAO M L, KIM M O, MORGELLO S, et al. Expression of inducible nitric oxide synthase, interleukin-1 and caspase-1 in HIV-1 encephalitis[J]. J Neuroimmunol, 2001, 115(1,2):182-191. [55] ANTHONY I C, RAMAGE S N, CARNIE F W, et al. Influence of HAART on HIV-related CNS disease and neuroinflammation[J]. J Neuropathol Exp Neurol, 2005, 64(6):529-536. [56] CHANG L, LEE P L, YIANNOUTSOS C T, et al. A multicenter in vivo proton-MRS study of HIV-associated dementia and its relationship to age[J]. Neuroimage, 2004, 23(4):1336-1347. [57] SANFORD R, FERNANDEZ CRUZ A L, SCOTT S C, et al. Regionally specific brain volumetric and cortical thickness changes in HIV-infected patients in the HAART era[J]. J Acquir Immune Defic Syndr, 2017, 74(5):563-570. [58] WRIGHT P W, PYAKUREL A, VAIDA F F, et al. Putamen volume and its clinical and neurological correlates in primary HIV infection[J]. Aids, 2016, 30(11):1789-1794. [59] HEATON R K, FRANKLIN D JR R, DEUTSCH R, et al. Neurocognitive change in the era of HIV combination antiretroviral therapy:the longitudinal CHARTER study[J]. Clin Infect Dis, 2015, 60(3):473-480. [60] BROUILLETTE M J, YUEN T, FELLOWS L K, et al. Identifying neurocognitive decline at 36 months among HIV-positive participants in the CHARTER cohort using group-based trajectory analysis[J]. PLoS One, 2016, 11(5):e0155766. [61] SACKTOR N, SKOLASKY R L, SEABERG E, et al. Prevalence of HIV-associated neurocognitive disorders in the multicenter AIDS cohort study[J]. Neurology, 2016, 86(4):334-340. [62] BONNET F, AMIEVA H, MARQUANT F, et al. Cognitive disorders in HIV-infected patients:are they HIV-related?[J]. Aids, 2013, 27(3):391-400. [63] COLE J H, UNDERWOOD J, CAAN M W, et al. Increased brain-predicted aging in treated HIV disease[J]. Neurology, 2017, 88(14):1349-1357. [64] COLE J H, CAAN M W A, UNDERWOOD J, et al. No evidence for accelerated aging-related brain pathology in treated human immunodeficiency virus:longitudinal neuroimaging results from the comorbidity in relation to AIDS (COBRA) project[J]. Clin Infect Dis, 2018, 66(12):1899-1909. [65] YANG L Q, LIN F C, LEI H. Resting state functional connectivity in brain studied by fMRI approach[J]. Chinese J Magn Reson, 2010, 27(3):326-340.杨丽琴,林富春,雷皓.静息状态下脑功能连接的磁共振成像研究[J].波谱学杂志, 2010, 27(3):326-340. |
[1] | HE Hong-yan, WEI Shu-feng, WANG Hui-xian, YANG Wen-hui. Matrix Gradient Coil: Current Research Status and Perspectives [J]. Chinese Journal of Magnetic Resonance, 2021, 38(1): 140-153. |
[2] | HU Ge-li, DENG Ye-hui, WANG Kun, JIANG Tian-zi. A New MRI System Architecture Based on 5G Remote Control and Processing [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 490-495. |
[3] | WU Ming-di, FENG Jie, JIA Hui-hui, WU Ji-zhi, ZHANG Xin, CHANG Yan, YANG Xiao-dong, SHENG Mao. MRI-Based Morphological Quantification of Developmental Dysplasia of the Hip in Children [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 434-446. |
[4] | LIAO Zhi-wen, CHEN Jun-fei, YANG Chun-sheng, ZHANG Zhi, CHEN Li, XIAO Li-zhi, CHEN Fang, LIU Chao-yang. A Design Scheme for 1H/31P Dual-Nuclear Parallel MRI Coil [J]. Chinese Journal of Magnetic Resonance, 2020, 37(3): 273-282. |
[5] | ZHOU You, YANG Yang, SONG Li-qiang, BI Tian-tian, WANG Yue, ZHAO Ying. Effects of Panax quinquefolius L.-Acorus Tatarinowii on Cognitive Deficits and Brain Morphology of Type 1 Diabetic Rats [J]. Chinese Journal of Magnetic Resonance, 2020, 37(3): 332-348. |
[6] | LOU Yun-zhong, LIU Ying, JIANG Hua, ZHANG Hao-wei. A Deep Learning Algorithm for Classifying Meningioma and Auditory Neuroma in the Cerebellopontine Angle from Magnetic Resonance Images [J]. Chinese Journal of Magnetic Resonance, 2020, 37(3): 300-310. |
[7] | ZHAO Shang-yi, WANG Yuan-jun. Classification of Alzheimer's Disease Patients Based on Magnetic Resonance Images and an Improved UNet++ Model [J]. Chinese Journal of Magnetic Resonance, 2020, 37(3): 321-331. |
[8] | XU Peng-cheng, XIAO Liang. A Design Scheme for Data Transmission Module on Multi-Channel Magnetic Resonance Imaging Spectrometers [J]. Chinese Journal of Magnetic Resonance, 2020, 37(3): 283-290. |
[9] | XIAO Liang, LOU Yu-kun, ZHOU Hang-yu. A U-Net Network-Based Rapid Construction of Knee Models for Specific Absorption Rate Estimation [J]. Chinese Journal of Magnetic Resonance, 2020, 37(2): 144-151. |
[10] | LIU Ke-wen, LIU Zi-long, WANG Xiang-yu, CHEN Li, LI Zhao, WU Guang-yao, LIU Chao-yang. Prostate Cancer Diagnosis Based on Cascaded Convolutional Neural Networks [J]. Chinese Journal of Magnetic Resonance, 2020, 37(2): 152-161. |
[11] | WANG Qiang, WEI Shu-feng, WANG Zheng, YANG Wen-hui. Design of Matrix Gradient Coils with Particle Swarm Optimization and the Genetic Algorithm [J]. Chinese Journal of Magnetic Resonance, 2019, 36(4): 463-471. |
[12] | WEI Guo-jing, YI Pei-wei, TAO Quan, FENG Yan-qiu. Comparisons of Different CEST Quantification Metrics Applied in Acute Parkinson's Disease Mouse Model [J]. Chinese Journal of Magnetic Resonance, 2019, 36(2): 195-207. |
[13] | HUANG Zhao-hui, ZHANG Zhi, CHEN Li, CHEN Jun-fei, ZHANG Zhen, CHEN Fang, LIU Chao-yang. A Time-Division Multiplexing Design for Gradient Preemphasis Module in Magnetic Resonance Imaging Scanner [J]. Chinese Journal of Magnetic Resonance, 2018, 35(4): 465-474. |
[14] | LIU Ying, SONG Ming-hui, WANG Kun, ZHANG Hao-wei. A Magnetic Resonance Receiver System Design Based on All Programmable System-on-a-Chip and LabVIEW [J]. Chinese Journal of Magnetic Resonance, 2018, 35(4): 475-485. |
[15] | WANG Hong-zhi, ZHAO Di, YANG Li-qin, XIA Tian, ZHOU Xiao-yue, MIAO Zhi-ying. An Approach for Training Data Enrichment and Batch Labeling in AI+MRI Aided Diagnosis [J]. Chinese Journal of Magnetic Resonance, 2018, 35(4): 447-456. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 250
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||