Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (1): 125-142.doi: 10.1007/s10473-023-0108-5
Previous Articles Next Articles
Guiqiao XU1,†, Yongping Liu2, Dandan GUO2
Received:
2021-08-05
Revised:
2022-06-25
Published:
2023-03-01
Contact:
†Guiqiao XU.E-mail: Xuguiqiao@aliyun.com
About author:
Yongping Liu, E-mail: ypliu@bnu.edu.cn; Dandan GUO, 2728561580@qq.com
Supported by:
Guiqiao XU, Yongping Liu, Dandan GUO. OPTIMAL BIRKHOFF INTERPOLATION AND BIRKHOFF NUMBERS IN SOME FUNCTION SPACES*[J].Acta mathematica scientia,Series B, 2023, 43(1): 125-142.
[1] Wang H P, Xu G Q.Sampling numbers of a class of infinitely differentiable functions. J Math Anal App, 2020, 484: 123689 [2] Xu G Q, Wang H.Sample numbers and optimal Lagrange interpolation of Sobolev spaces. Rocky MT J Math, 2021, 51(1): 347-361 [3] Ben A, Yi S.Compressive Hermite Interpolation: Sparse, High-Dimensional Approximation from Gradient- Augmented Measurements. Constr Approx, 2019, 50: 167-207 [4] Dell’Accioa F, Tommaso F Di. Complete Hermite-Birkhoff interpolation on scattered data by combined Shepard operators. J Comput Appl Math, 2016, 300: 192-206 [5] Dell’Accioa F, Tommaso F Di, Nouisser O, Zerroudi B. Fast and accurate scattered Hermite interpolation by triangular Shepard operators. J Comput Appl Math, 2021, 382: 113092 [6] Garcáa-Marco I, Koiran P.Lower bounds by Birkhoff interpolation. J Complexity, 2017, 39: 38-50 [7] Goldman G.A case of multivariate Birkhoff interpolation using high order derivatives. J Approx Theory, 2017, 223: 19-28 [8] Jiao Y J, Wang L L, Huang C.Well-conditioned fractional collocation methods using fractional Birkhoff interpolation basis. J Comput Phys, 2016, 305: 1-28 [9] Mahmoodi A, Nazarzadeh A.A class of Birkhoff type interpolation and applications. Results Math, 2018, 73: 43 [10] Zare F, Heydari M, Loghmani G B, Wazwaz A-M.Numerical investigation of the Beam-type nanoelectrostatic actuator model by using the Birkhoff interpolation method. Int J Appl Comput Math, 2017, 3(Suppl 1): S129-S146 [11] Allasia G, Cavoretto R, De Rossi A.Hermite-Birkhoff interpolation on scattered data on the sphere and other manifolds. Appl Math Comput, 2018, 318: 35-50 [12] Barthelmann V, Novak E, Ritter K.High dimensional polynomial interpolation on sparse grids. Adv Comput Math, 2000, 12: 273-288 [13] ErrachidM, Essanhaji A,Messaoudi A. RMVPIA: a new algorithm for computing the Lagrange multivariate polynomial interpolation. Numer Math, 2020, 84(4): 1507-1534 [14] Hinrichs A, Novak E, Ullrich M.On weak tractability of the Clenshaw-Curtis Smolyak algorithm. J Approx Theory, 2014, 183: 31-44 [15] Irigoyen A.Multidimensional intertwining Leja sequences and applications in bidimensional Lagrange interpolation. J Approx Theory, 2021, 264: 105540 [16] Xu G Q.On weak tractability of the Smolyak algorithm for approximation problems. J Approx Theory, 2015, 192: 347-361 [17] Wilson L, Vaughn N, Krasny R.A GPU-accelerated fast multipole method based on barycentric Lagrange interpolation and dual tree traversal. Comput Phys Commun, 2021, 265: 108017 [18] Liu J, Zhu L Y.Bivariate Lagrange interpolation based on Chebyshev points of the second kind. Acta Math Hung, 2019, 159(2): 618-637 [19] Hoang N S.On node distributions for interpolation and spectral methods. Math Comp, 2016, 85: 667-692 [20] Babaev S S, Hayotov A R.Optimal interpolation formulas in W (m,m-1) 2 space. Calcolo, 2019, 56: 23-45 [21] Xu G Q, Liu Z H, Wang H.Sample numbers and optimal Lagrange interpolation of Sobolev spaces Wr 1 . Chinese Ann Math, Ser B, 2021, 42(4): 519-528 [22] Lorentz G G, Jetter K, Riemenschneider S D.Birkhoff interpolation//Encyclopedia of Mathematics and its Applications, Vol 19. Cambridge University Press, 1984 [23] Liu Z H, Lu W T, Xu G Q.Simultaneous approximation of Birkhoff interpolation and the associated sharp inequalities. Int J Wavelets Multi, 2020, 18(4): 2050021 [24] Nürnberger G.Approximation by Spline Functions. Beijing: Springer-Verlag, 1992 [25] Novak E, Woźniakowski H.Tractability of Multivariate Problems. Volume I: Linear Information. Zürich: Eur Math Soc, 2008 [26] DeVore R A, Lorentz G G. Constructive Approximation. New York: Springer-Verlag, 1993 |
[1] | Siran LI. A NEW PROOF OF GAFFNEY’S INEQUALITY FOR DIFFERENTIAL FORMS ON MANIFOLDS-WITH-BOUNDARY: THE VARIATIONAL APPROACH À LA KOZONO–YANAGISAWA [J]. Acta mathematica scientia,Series B, 2022, 42(4): 1427-1452. |
[2] | Fangwen DENG, Caiheng OUYANG, Guantie DENG. SOME QUESTIONS REGARDING VERIFICATION OF CARLESON MEASURES [J]. Acta mathematica scientia,Series B, 2021, 41(6): 2136-2148. |
[3] | Dan LI, Junfeng LI, Jie XIAO. AN UPBOUND OF HAUSDORFF'S DIMENSION OF THE DIVERGENCE SET OF THE FRACTIONAL SCHRÖDINGER OPERATOR ON Hs($\mathbb{R}^n$) [J]. Acta mathematica scientia,Series B, 2021, 41(4): 1223-1249. |
[4] | Abdelkrim MOUSSAOUI, Jean VELIN. EXISTENCE AND BOUNDEDNESS OF SOLUTIONS FOR SYSTEMS OF QUASILINEAR ELLIPTIC EQUATIONS [J]. Acta mathematica scientia,Series B, 2021, 41(2): 397-412. |
[5] | Changyu GUO, Changlin XIANG. REGULARITY OF P-HARMONIC MAPPINGS INTO NPC SPACES [J]. Acta mathematica scientia,Series B, 2021, 41(2): 633-645. |
[6] | Jineng DAI, Jingyun ZHOU. GLEASON'S PROBLEM ON FOCK-SOBOLEV SPACES [J]. Acta mathematica scientia,Series B, 2021, 41(1): 337-348. |
[7] | Jae-Myoung KIM, Yun-Ho KIM, Jongrak LEE. RADIALLY SYMMETRIC SOLUTIONS FOR QUASILINEAR ELLIPTIC EQUATIONS INVOLVING NONHOMOGENEOUS OPERATORS IN AN ORLICZ-SOBOLEV SPACE SETTING [J]. Acta mathematica scientia,Series B, 2020, 40(6): 1679-1699. |
[8] | Wenyu TAO, Yanping CHEN, Jili LI. GRADIENT ESTIMATES FOR THE COMMUTATOR WITH FRACTIONAL DIFFERENTIATION FOR SECOND ORDER ELLIPTIC OPERATORS [J]. Acta mathematica scientia,Series B, 2019, 39(5): 1255-1264. |
[9] | Feng CHENG, Wei-Xi LI, Chao-Jiang XU. GEVREY REGULARITY WITH WEIGHT FOR INCOMPRESSIBLE EULER EQUATION IN THE HALF PLANE [J]. Acta mathematica scientia,Series B, 2017, 37(4): 1115-1132. |
[10] | Jiesheng XIAO, Guangfu CAO. WANDERING SUBSPACES OF THE HARDY-SOBOLEV SPACES OVER Dn [J]. Acta mathematica scientia,Series B, 2016, 36(5): 1467-1473. |
[11] | Yunshun WU, Zhong TAN. ASYMPTOTIC BEHAVIOR OF THE STOKES APPROXIMATION EQUATIONS FOR COMPRESSIBLE FLOWS IN R3 [J]. Acta mathematica scientia,Series B, 2015, 35(3): 746-760. |
[12] | Yanyan XU, Guanggui CHEN, Ying GAN, Yan XU. PROBABILISTIC AND AVERAGE LINEAR WIDTHS OF SOBOLEV SPACE WITH GAUSSIAN MEASURE IN SPACE SQ(T) (1≤Q≤∞) [J]. Acta mathematica scientia,Series B, 2015, 35(2): 495-507. |
[13] | FU Yang-Geng, LIU Zheng-Rong, TANG Hao. NON-UNIFORM DEPENDENCE ON INITIAL DATA FOR THE MODIFIED CAMASSA-HOLM EQUATION ON THE LINE [J]. Acta mathematica scientia,Series B, 2014, 34(6): 1781-1794. |
[14] | WANG Hong-Wei. LOCAL WELL-POSEDNESS IN SOBOLEV SPACES WITH NEGATIVE INDICES FOR A SEVENTH ORDER DISPERSIVE EQUATION [J]. Acta mathematica scientia,Series B, 2014, 34(1): 199-208. |
[15] | PENG Ru, OUYANG Cai-Heng. CARLESON MEASURES FOR BESOV-SOBOLEV SPACES WITH APPLICATIONS IN THE UNIT BALL OF Cn [J]. Acta mathematica scientia,Series B, 2013, 33(5): 1219-1230. |
|