Acta mathematica scientia,Series B ›› 2021, Vol. 41 ›› Issue (2): 397-412.doi: 10.1007/s10473-021-0205-2
• Articles • Previous Articles Next Articles
Abdelkrim MOUSSAOUI1, Jean VELIN2
Received:
2019-09-12
Revised:
2020-04-27
Online:
2021-04-25
Published:
2021-04-29
About author:
Abdelkrim MOUSSAOUI,E-mail:abdelkrim.moussaoui@univ-bejaia.dz;Jean VELIN,E-mail:jean.velin@univ-antilles.fr
Supported by:
CLC Number:
Abdelkrim MOUSSAOUI, Jean VELIN. EXISTENCE AND BOUNDEDNESS OF SOLUTIONS FOR SYSTEMS OF QUASILINEAR ELLIPTIC EQUATIONS[J].Acta mathematica scientia,Series B, 2021, 41(2): 397-412.
[1] Adams R A. Sobolev spaces. New York, London, Toronto, Sydney, San Francisco:Academic Press, 1975 [2] Adriouch K. On quasilinear and anisotropic elliptic systems with Sobolev critical exponents. University of La Rochelle:Thesis, 2007 [3] Aghajani A, Shamshiri J. Multilplcity of positive solutions for quasilinear elliptic p-Laplacians systems. Elec J Diff Eqts, 2012, 111:1-16 [4] Ahammou A. A multilplcity result for a quasilinear gradient elliptic system. J App Math, 2001, 1(3):91-106 [5] Brézis H. Analyse fonctionnelle, Théorie et applications. Paris:Masson, 1983 [6] Choi Y S, McKenna P J. A singular Gierer-Meinhardt system of elliptic equations. Ann Inst H Poincaré Anal Non-linéaire, 2000, 17(4):503-522 [7] Clément Ph, Fleckinger J, Mitidieri E, de Thélin F. Existence of positive solutions for a non variational quasilinear elliptic system. J Diff Eqts, 2000, 166(2):455-477 [8] Clément Ph, Garcia-Huidobro M, Guerra I, Manasevich R. On region of existence and nonexistence of solutions for a system of p, q-Laplacians. Asymptot Anal, 2006, 48(1/2):1-18 [9] Cuesta M, Takáč P. Nonlinear eigenvalue problems for degenerate elliptic systems. Diff Int Eqts, 2010, 23(11/12):1117-1138 [10] Evans L C. Partial Differential Equations. Graduate studies in Mathematics. V19. American Mathematical Society-second edition, 2010 [11] De Figueiredo D G. Nonlinear elliptic systems. An Acad Bras Ciênc, 2000, 72(4):453-469 [12] De Figueiredo D G. Semilinear elliptic systems:existence, multiplicity, symmetry of solutions//Chipot M. Handbook of Differential Equations:Stationary Partial Differential Equations. Vol 5. Amsterdam, The Netherlands:Elsevier Science BV, 2008:1-48 [13] De Figueiredo D G. Lectures on the Ekeland variational principle with applications and detours. Bombay:Tata Institute on Fundamental Research, 1989 [14] de Thélin F. Première valeur propre d'un système elliptique non linéaire. Rev Mat Apl, 1992, 13(1):1-8; see also C R Acad Sci Paris Ser I, 1990, 311(10):603-606 [15] de Thélin F, Vélin J. Existence et non-existence de solutions non triviales pour des systèmes elliptiques non linèaires. CR Acad Sci Paris, 1991, 313:589-592 [16] de Thélin F, Vélin J. Existence and nonexistence of nontrivial solutions for some nonlinear elliptic systems. Rev Mat Univ Comput Madrid, 1993, 6:153-194 [17] Faraci F, Motreanu D, Puglisi D. Positive solutions of quasi-linear elliptic equations with dependence on the gradient. Calc Var Partial Differential Equations, 2015, 54(1):525-538 [18] Giacomoni J, Hernandez J, Moussaoui A. Quasilinear and singular systems:the cooperative case. Contemp Math Amer Math Soc, 2011, 540:79-94 [19] Giacomoni J, Hernandez J, Sauvy P. On quasilinear and singular elliptic systems. Adv Nonl Anal, 2013, 2:1-14 [20] Gilbarg D, Trundiger N S. Elliptic partial differential equations of second order. Springer, Berlin, Heidelberg:Springer-Verlag, 2001 [21] Hai D D, Shivaji R. An existence result on positive solutions for a a class of p-Laplacian systems. Nonl Anal, 2004, 56(7):1007-1010 [22] Hernandez J, Mancebo F J, Vega J M. Positive solutions for singular semilinear elliptic systems. Adv Diff Eqts, 2008, 13(9/10):857-880 [23] Jebelan P, Precup R. Solvability of p, q-Laplacian systems with potential boundary conditions. Appl Anal, 2010, 89(2):221-228 [24] EL Manouni S, Perera K, Shivaji R. On singular quasi-monotone (p, q)-Laplacian systems. Proc Roy Soc Edinburgh Sect A, 2012, 142(3):585-594 [25] Lions J L, Peetre J. Sur une classe d'espaces d'interpolation. Publications mathématiques de l'IHES, 1964, 19:5-68 [26] Máté G. Fractional order Sobolev spaces. Budapest:Thesis Matematikus MSC, 2012 [27] Motreanu D, Moussaoui A. A quasilinear singular elliptic system without cooperative structure. Acta Mathematica Scientia, 2014, 34B(3):905-916 [28] Osborne M S. Locally convex spaces//Graduate Texts in Mathematics. Springer, 2014 [29] Otani M. Existence and nonexistence of nontrivial solutions of some nonlinear degenerate elliptic equations. J Funct Anal, 1988, 76(1):140-159 [30] Smart D R. Fixed Point Theorems. Cambridge:Cambridge University Press, 1980 [31] Shen Y, Zhang J. Multiplicity of positive solutions for a semilinear p-Laplacian system with Sobolev critical exponent. Nonl Anal, 2011, 74(4):1019-1030 [32] Simon J. Caractérisation d'espaces fonctionnels. Bollettino UMI, 1978, 15B(5):687-714 [33] Simon J. Régularité locale des solutions d'une équation non linéaire[D]. Paris:University of P M Curie, 1976 [34] Simon J. Régularité de la solution d'un problème aux limites non linéaires. Annales Facultés des sciences Toulouse, 1981, 3(3/4):247-274 [35] Takáč P. Regular and singular system with the p- and q-Laplacians//Advanced lecture in the International conference Variational and topological mehods:Theory, Applications, numerical simulations and open problems. Flagstaff, Arizona, USA:Northen Arizona University, 2012-06-09 [36] Tolksdorf P. Regularity for a more general class of quasilinear elliptic equations. J Diff Eqts, 1984, 51:126-150 [37] Wang H. Existence and nonexistence of positive radial solutions for quasilinear systems. Disc Cont Dyn Syst, 2009:810-817 [38] Wei L, Feng Z. Existence and nonexistence of solutions for quasilinear elliptic systems. Dyn Partial Diff Eqts, 2013, 10(1):25-42 |
[1] | Xinyu TU, Chunlai MU, Shuyan QIU. CONTINUOUS DEPENDENCE ON DATA UNDER THE LIPSCHITZ METRIC FOR THE ROTATION-CAMASSA-HOLM EQUATION [J]. Acta mathematica scientia,Series B, 2021, 41(1): 1-18. |
[2] | Siran LI. ON VORTEX ALIGNMENT AND THE BOUNDEDNESS OF THE Lq-NORM OF VORTICITY IN INCOMPRESSIBLE VISCOUS FLUIDS [J]. Acta mathematica scientia,Series B, 2020, 40(6): 1700-1708. |
[3] | Xuan Truong LE, Thanh Nhan NGUYEN, Ngoc Trong NGUYEN. ON BOUNDEDNESS PROPERTY OF SINGULAR INTEGRAL OPERATORS ASSOCIATED TO A SCHRÖDINGER OPERATOR IN A GENERALIZED MORREY SPACE AND APPLICATIONS [J]. Acta mathematica scientia,Series B, 2020, 40(5): 1171-1184. |
[4] | Yichen DAI, Zhong TAN. PARTIAL REGULARITY FOR STATIONARY NAVIER-STOKES SYSTEMS BY THE METHOD OF A-HARMONIC APPROXIMATION [J]. Acta mathematica scientia,Series B, 2020, 40(3): 835-854. |
[5] | Qingquan TANG, Qiao XIN, Chunlai MU. BOUNDEDNESS OF THE HIGHER-DIMENSIONAL QUASILINEAR CHEMOTAXIS SYSTEM WITH GENERALIZED LOGISTIC SOURCE [J]. Acta mathematica scientia,Series B, 2020, 40(3): 713-722. |
[6] | Léo GLANGETAS, Haoguang LI. SHUBIN REGULARITY FOR THE RADIALLY SYMMETRIC SPATIALLY HOMOGENEOUS BOLTZMANN EQUATION WITH DEBYE-YUKAWA POTENTIAL [J]. Acta mathematica scientia,Series B, 2019, 39(6): 1487-1507. |
[7] | Lianhua HE, Zhong TAN. PARTIAL REGULARITY OF STATIONARY NAVIER-STOKES SYSTEMS UNDER NATURAL GROWTH CONDITION [J]. Acta mathematica scientia,Series B, 2019, 39(1): 94-110. |
[8] | Junhui XIE, Xiaozhong HUANG, Yiping CHEN. EXISTENCE OF MULTIPLE SOLUTIONS FOR A FRACTIONAL p-LAPLACIAN SYSTEM WITH CONCAVE-CONVEX TERM [J]. Acta mathematica scientia,Series B, 2018, 38(6): 1821-1832. |
[9] | Feimin HUANG, Yong WANG. MACROSCOPIC REGULARITY FOR THE BOLTZMANN EQUATION [J]. Acta Mathematica Scientia, 2018, 38(5): 1549-1566. |
[10] | Jianjun HUANG, Zhenglu JIANG. AVERAGE REGULARITY OF THE SOLUTION TO AN EQUATION WITH THE RELATIVISTIC-FREE TRANSPORT OPERATOR [J]. Acta mathematica scientia,Series B, 2017, 37(5): 1281-1294. |
[11] | Feng CHENG, Wei-Xi LI, Chao-Jiang XU. GEVREY REGULARITY WITH WEIGHT FOR INCOMPRESSIBLE EULER EQUATION IN THE HALF PLANE [J]. Acta mathematica scientia,Series B, 2017, 37(4): 1115-1132. |
[12] | Jae-Myoung KIM. LOCAL REGULARITY CRITERIA OF A SUITABLE WEAK SOLUTION TO MHD EQUATIONS [J]. Acta mathematica scientia,Series B, 2017, 37(4): 1033-1047. |
[13] | Soumaya SÂANOUNI, Nihed TRABELSI. A BIFURCATION PROBLEM ASSOCIATED TO AN ASYMPTOTICALLY LINEAR FUNCTION [J]. Acta mathematica scientia,Series B, 2016, 36(6): 1731-1746. |
[14] | Yunguang LU, Christian KLINGENBERG, Ujjwal KOLEY, Xuezhou LU. DECAY RATE FOR DEGENERATE CONVECTION DIFFUSION EQUATIONS IN BOTH ONE AND SEVERAL SPACE DIMENSIONS [J]. Acta mathematica scientia,Series B, 2015, 35(2): 281-302. |
[15] | YE Zhuan. A NOTE ON GLOBAL WELL-POSEDNESS OF SOLUTIONS TO BOUSSINESQ EQUATIONS WITH FRACTIONAL DISSIPATION [J]. Acta mathematica scientia,Series B, 2015, 35(1): 112-120. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 4
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 93
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|