[1] Chemin J Y, Desjardins B, Gallagher I, et al. Mathematical Geophysics. An Introduction to Rotating Fluids and the Navier-Stokes Equations. Oxford Lecture Series in Mathematics and its Applications, 32. Oxford:The Clarendon Press, Oxford University Press, 2006 [2] Bourguignon J P, Brezis H. Remarks on the Euler equation. J Funct Anal, 1974, 15:341-363 [3] Chen Hua, Li Weixi, Xu Chaojiang. Gevrey regularity of subelliptic Monge-Ampére equations in the plane. Adv Math, 2011, 228(3):1816-1841 [4] Chen Hua, Li Weixi, Xu Chaojiang. Gevrey hypoellipticity for a class of kinetic equations. Comm Partial Differ Equ, 2011, 36(4):693-728 [5] Chen Hua, Li Weixi, Xu Chaojiang. Analytic smoothness effect of solutions for spatially homogeneous Landau equation. J Differ Equ, 2010, 248(1):77-94 [6] Chen Hua, Li Weixi, Xu Chaojiang. Gevrey hypoellipticity for linear and non-linear Fokker-Planck equations. J Differ Equ, 2009, 246(1):320-339 [7] Ebin D G, Marsden J E. Groups of diffeomorphisms and the solution of the classical Euler equations for a perfect fluid. Bull Amer Math Soc, 1969, 75:962-967 [8] Kukavica I, Vicol V C. The domain of analyticity of solutions to the three-dimensional Euler equations in a half space. Discrete Contin Dyn Syst, 2011, 29(1):285-303 [9] Kukavica I, Vicol V. On the analyticity and Gevrey-class regularity up to the boundary for the Euler equations. Nonlinearity, 2011, 24(3):765-796 [10] Kato T. Nonstationary flows of viscous and ideal fluids in R3. J Funct Anal, 1972, 9:296-305 [11] Kato T. On classical solutions of the two-dimensional nonstationary Euler equation. Arch Rational Mech Anal, 1967, 25:188-200 [12] Taylor M E. Partial Differential Equations. Ⅲ. Nonlinear Equations. Corrected reprint of the 1996 original. New York:Springer-Verlag, 1997 [13] Temam R. On the Euler equations of incompressible perfect fluids. J Funct Anal, 1975, 20(1):32-43 [14] Fioas C, Frisch U, Temam R. Existence de solutions C∞ des équations d'Euler. (French) C R Acad Sci Paris Sér A-B, 1975, 280:A505-A508 [15] Yudovich V I. Non-stationary flows of an ideal incompressible fluid. Zh Vychisl Mat Mat Fiz, 1963, 3(6):1032-1066 [16] Oliver M. Classical solutions a generalized Euler equation in two dimensions. J Math Anal Appl, 1997, 215(2):471-484 [17] Chen H, Li W X, Xu C J. Gevrey regularity for solution of the spatially homogeneous Landou equation. Acta Math Sci, 2009, 29B(3):673-686 |