Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (1): 169-183.doi: 10.1007/s10473-023-0111-x

Previous Articles     Next Articles

GLOBAL RIGIDITY THEOREMS FOR SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE*

Pengfei Pan1,2, Hongwei Xu1, Entao Zhao1,†   

  1. 1. Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China;
    2. Yuanpei college, Shaoxing University, Shaoxing 312000, China
  • Received:2021-07-13 Revised:2022-07-01 Published:2023-03-01
  • Contact: †Entao ZHAO. E-mail: zhaoet@zju.edu.cn
  • About author:Pengfei Pan, E-mail: panpengfei@zju.edu.cn;Hongwei Xu, E-mail: xuhw@zju.edu.cn
  • Supported by:
    *National Natural Science Foun-dation of China (11531012, 12071424, 12171423); and the Scientific Research Project of Shaoxing University(2021LG016).

Abstract: In this paper, we mainly study the global rigidity theorem of Riemannian submanifolds in space forms. Let $M^n(n \geq 3)$ be a complete minimal submanifold in the unit sphere $ S^{n+p}(1) $. For $\lambda \in [0,\frac{n}{2-1/p})$, there is an explicit positive constant $C(n, p, \lambda )$, depending only on $n,p,\lambda $, such that, if $ \int_{M} S^{n/2} {\rm d}M < \infty, \int_{M}(S-\lambda )_{+}^{n/2}{\rm d}M<C(n, p, \lambda), $ then $M^n$ is a totally geodetic sphere, where $S$ denotes the square of the second fundamental form of the submanifold and $f_+=\max\{0,f\}$. Similar conclusions can be obtained for a complete submanifold with parallel mean curvature in the Euclidean space $ R^{n+p}$.

Key words: Euclidean space, the unit sphere, submanifolds with parallel mean curvature, global rigidity theorem

Trendmd