Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (3): 1462-1476.doi: 10.1007/s10473-023-0326-x
Kunrada Kankam, Prasit Cholamjiak†
Received:
2022-04-06
Revised:
2022-08-25
Online:
2023-06-25
Published:
2023-06-06
Contact:
† Prasit Cholamjiak, E-mail: prasitch2008@yahoo.com
About author:
Kunrada Kankam, E-mail: kunradazzz@gmail.com
Supported by:
Kunrada Kankam, Prasit Cholamjiak. DOUBLE INERTIAL PROXIMAL GRADIENT ALGORITHMS FOR CONVEX OPTIMIZATION PROBLEMS AND APPLICATIONS*[J].Acta mathematica scientia,Series B, 2023, 43(3): 1462-1476.
[1] Bauschke H H, Combettes P L.Convex Analysis and Monotone Operator Theory in Hilbert Spaces. New York: Springer, 2011 [2] Bauschke H H, Borwein J M.Dykstra's alternating projection algorithm for two sets. Journal of Approxi- mation Theory, 1994, 79(3): 418-443 [3] Beck A, Teboulle M.A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202 [4] Bello Cruz J Y, Nghia T T. On the convergence of the forward-backward splitting method with linesearches. Optimization Methods and Software, 2016, 31(6): 1209-1238 [5] Burachik R S, Iusem A N.Set-Valued Mappings and Enlargements of Monotone Operators. Boston: Springer Science Business Media, 2007 [6] Cai J F, Cands E J, Shen Z.A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 2010, 20(4): 1956-1982 [7] Combettes P L, Pesquet J C.Proximal splitting methods in signal processing//Bauschke H H, Burachik R S, Combettes P L, et al. Fixed-Point Algorithms for Inverse Problems in Science and Engineering. New York: Springer, 2011: 185-212 [8] Combettes P L, Wajs V R.Signal recovery by proximal forward-backward splitting. Multiscale Modeling Simulation, 2005, 4(4): 1168-1200 [9] Cui F, Tang Y, Yang Y.An inertial three-operator splitting algorithm with applications to image inpainting. arXiv:1904.11684 [10] Davis D, Yin W.A three-operator splitting scheme and its optimization applications. Set-Valued and Variational Analysis, 2017, 25(4): 829-858 [11] Goldstein A A.Convex programming in Hilbert space. Bulletin of the American Mathematical Society, 1964, 70(5): 709-710 [12] Hanjing A, Suantai S.A fast image restoration algorithm based on a fixed point and optimization method. Mathematics, 2020, 8(3): 378 [13] Kankam K, Pholasa N, Cholamjiak P.Hybrid forward-backward algorithms using linesearch rule for mini- mization problem. Thai Journal of Mathematics, 2019, 17(3): 607-625 [14] Kankam K, Pholasa N, Cholamjiak P.On convergence and complexity of the modified forward-backward method involving new linesearches for convex minimization. Mathematical Methods in the Applied Sciences, 2019, 42(5): 1352-1362 [15] Levitin E S, Polyak B T.Constrained minimization methods. USSR Computational Mathematics and Mathematical Physics, 1966, 6(5): 1-50 [16] Moudafi A, Oliny M.Convergence of a splitting inertial proximal method for monotone operators. Journal of Computational and Applied Mathematics, 2003, 155(2): 447-454 [17] Nesterov Y E.A method for solving the convex programming problem with convergence rate O(1/k2). Dokl Akad Nauk SSSR, 1983, 269(3): 543-547 [18] Opial Z.Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bul- letin of the American Mathematical Society, 1967, 73(4): 591-597 [19] Osilike M O, Aniagbosor S C.Weak and strong convergence theorems for fixed points of asymptotically nonexpensive mappings. Mathematical and Computer Modelling, 2000, 32(10): 1181-1191 [20] Polyak B T.Some methods of speeding up the convergence of iteration methods. USSR Computational Mathematics and Mathematical Physics, 1964, 4(5): 1-17 [21] Verma M, Shukla K K.A new accelerated proximal gradient technique for regularized multitask learning framework. Pattern Recognition Letters, 2017, 95: 98-103 [22] Wang Z, Bovik A C, Sheikh H R, Simoncelli E P.Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4): 600-612 |
[1] | Ran Wang, Beibei Zhang. A LARGE DEVIATION PRINCIPLE FOR THE STOCHASTIC GENERALIZED GINZBURG-LANDAU EQUATION DRIVEN BY JUMP NOISE* [J]. Acta mathematica scientia,Series B, 2023, 43(2): 505-530. |
[2] | Shukai CHEN, Zenghu LI. CONTINUOUS TIME MIXED STATE BRANCHING PROCESSES AND STOCHASTIC EQUATIONS [J]. Acta mathematica scientia,Series B, 2021, 41(5): 1445-1473. |
[3] | Wenqiang ZHAO, Yijin ZHANG. UPPER SEMI-CONTINUITY OF RANDOM ATTRACTORS FOR A NON-AUTONOMOUS DYNAMICAL SYSTEM WITH A WEAK CONVERGENCE CONDITION [J]. Acta mathematica scientia,Series B, 2020, 40(4): 921-933. |
[4] | Nermina MUJAKOVIC, Nelida CRNJARIC-ZIC. GLOBAL SOLUTION TO 1D MODEL OF A COMPRESSIBLE VISCOUS MICROPOLAR HEAT-CONDUCTING FLUID WITH A FREE BOUNDARY [J]. Acta mathematica scientia,Series B, 2016, 36(6): 1541-1576. |
[5] | LIU San-Yang, HE Hui-Min, CHEN Ru-Dong. APPROXIMATING SOLUTION OF 0 ∈T(x) FOR AN H-MONOTONE OPERATOR IN HILBERT SPACES [J]. Acta mathematica scientia,Series B, 2013, 33(5): 1347-1360. |
[6] | CAI Gang, BU Shang-Quan. WEAK CONVERGENCE THEOREMS FOR GENERAL EQUILIBRIUM PROBLEMS AND VARIATIONAL INEQUALITY PROBLEMS AND FIXED POINT PROBLEMS IN BANACH SPACES [J]. Acta mathematica scientia,Series B, 2013, 33(1): 303-320. |
[7] | GAN Shi-Xin, CHEN Ping-Yan. SOME LIMIT THEOREMS FOR WEIGHTED SUMS OF ARRAYS OF NOD RANDOM VARIABLES [J]. Acta mathematica scientia,Series B, 2012, 32(6): 2388-2400. |
[8] | DAI Hong-Shuai, LI Yu-Qiang. STABLE SUB-GAUSSIAN MODELS CONSTRUCTED BY POISSON PROCESSES [J]. Acta mathematica scientia,Series B, 2011, 31(5): 1945-1958. |
[9] | XI Fu-Bao, DIAO Li-Qin. WEAK LIMITS OF EMPIRICAL MEASURES FOR A FAMILY OF DIFFUSION PROCESSES [J]. Acta mathematica scientia,Series B, 2004, 24(2): 301-306. |
[10] | KONG Fan-Chao, TANG Qi-He. NOTES ON ERDOS&rsquo|CONJECTURE [J]. Acta mathematica scientia,Series B, 2000, 20(4): 533-541. |
[11] | Wang Qihua. SOME LARGE SAMPLE PROPERTIES OF AN ESTIMATOR OF THE HAZARD FUNCTION FROM RANDOMLY CENSORED DATA [J]. Acta mathematica scientia,Series B, 1997, 17(2): 230-240. |
|