[1] Bardina X, Jolis M. Weak approximation of the Brownian sheet from a Poisson process in the plane. Bernoulli, 2000, 6: 653–665
[2] Bardina X, Jolis M, Tudor C A. Weak convergence to the fractional Brownian sheet and other twoparameter Gaussian processes. Statist Probab Lett, 2003, 65: 317–329
[3] Bickel P, Wichura M. Convergence criteria for multiparameter stochastic processes and some application. Ann Math Statist, 1971, 42: 1656–1670
[4] Billingsley P. Convergence of Probability Measures. New York: John Willey and Sons, 1968
[5] Delgado R, Jolis M.Weak approximation for a class of Gaussion processes. J Appl Prob, 2000, 37: 400–407
[6] Ethier S, Kurtz T. Markov Processes: Characterization and Convergence. New York: John Wiley and Sons, 1986
[7] Georgiou P G, Kyriakakis C. Maximum likelihood parameter estimation under impulsive conditions, a sub-Gaussian signal approach. Signal Processing, 2006, 86: 3061–3075
[8] Kring S, Rachev S T, H¨ochst¨otter M, et al. Estimation of -stable sub-Gaussian distributions for asset returns//Bol G, Rachev S T,Wrth R, ed. Risk Assessment: Decisions in Banking and Finance. Heidelberg: Physica-Verlag, 2007: 111–152
[9] Li Y, Dai H. Approximations of fractional Brownian motion. Bernoulli (to appear)
[10] Samorodnitsky G, Taqqu M. Stable Non-Gaussian Random Processed. New York: Chapman and Hall, 1994
[11] Stroock D. Topics in Stochcastic Differential Equations. Bomaby: Tata Institute of Fundamental Research, Springer-Verlag, 1982
[12] Tzagkarakis G, Beferull-Lozano B, Tsakalides P. Rotation-invariant texture retrieval via signature alignment based on steerable sub-Gaussian modeling. Image Processing IEEE Transactions, 2008, 17: 1212–1225 |