[1] Abdlmouleh F, Jeribi A. Gustafson, Weidmann, Kato, Wolf, Schechter, Browder, Rakocevic and Schmoger essential spectra of the sum of two bounded operators. Math Nachr, 2011, 284: 166-176
[2] Abdmouleh F, Charfi S, Jeribi A. On a characterization of the essential spectra of the sum and the product of two operators. J Math Anal Appl, 2012, 386(1): 83-90
[3] Abdmouleh F, Ammar A, Jeribi A. Stability of the S-essential spectra on a Banach space. Math Slovaca, 2013, 63(2): 299-320
[4] Aiena P. Riesz operators and perturbation ideals. Note di Matematica, 1989, 9(1): 1-27
[5] Caradus S R. Operators of Riesz type. Paci J Math, 1966, 18: 61-71
[6] Dautray R, Lions J L. Analyse Matématique et Calcul Numérique. Vol 9. Masson: Paris, 1988
[7] Faierman M, Mennicken R, Möller M. A boundary eigenvalue problem for a system of partial differential operators occuring in magnetohydrodynamics. Math Nachr, 1995, 173: 141-167
[8] Gohberg I C, Markus A S, Feldman I A. Normally solvable operators and ideals associated with them. Amer Math Soc Transl Ser 2, 1967, 61: 63-84
[9] Gustafson K, Weidmann J. On the essential spectrum. J Math Anal Appl, 1969, 25: 121-127
[10] Jeribi A. Spectral Theory and Applications of Linear Operators and Block Operator Matrices. New York: Springer-Verlag, 2015
[11] Jeribi A, Moalla N, Yengui S. S-essential spectra and application to an example of transport operators. Math Meth Appl Sci, 2014, 37(16): 2341-2353
[12] Kato T. Perturbation theory for nullity, deficiency and other quantities of linear operators. J Anal Math, 1958, 6: 261-322
[13] Markus A S. Introduction to the Spectral Theory of Polynomial Operator Pencils. Providence: American Mathematical Society, 1988
[14] Mokhtar-Kharroubi M. Time asumptotic behavior and compactness in neutron transport theory. European Journal of Mechanics- B Fluids, 1992, 11(1): 39-68
[15] Nussbaum R D. Spectral mapping theorems and perturbation theorem for Browding essential spectrum. Tran Amer Math Soc, 1970, 150: 445-455
[16] Pelczynski A. On strictly singular and strictly cosingular operators. I. Strictly singular and strictly cosingular operators in C(Ω)-spaces. Bull Acad Polo Sci, 1965, 13: 31-36
[17] Schechter M. Basic theory of Fredholm operators. Ann Scuola Norm Sup Pisa (3), 1967, 21: 261-280
[18] Schechter M. Riesz operators and Fredholm perturbations. Bull Amer Math Soc, 1968, 74: 1139-1144
[19] Schechter M. Principles of Functional Analysis. 2nd ed. New York: Academic Press, 2001
[20] Shapiro J, Schechter M. A generalized operational calculus developed from Fredholm operator theory. Trans Amer Math Soc, 1973, 175: 439-467
[21] Shapiro J, Snow M. The Fredholm spectrum of the sum and product of two operators. Trans Amer Math Soc, 1974, 191: 387-393
[22] Shkalikov A A, Tretter C. Spectral analysis for linear pencils N - λP of ordinary differential operators. Math Nachr, 1996, 179: 275-305
[23] Taylor A E. Spectral theory of closed distributive operators. Acta Math, 1951, 84(3): 189-224
[24] Wolf F. On the invariance of the essential spectrum under a change of the boundary conditions of partial differential operators. Indag Math, 1959, 21: 142-147 |