[1] Agranovich Y Y, Sobolevskii P E. Motion of nonlinear viscoelastic fluid//Nonlinear Variational Problems and Partial Differential Equations. Isola d'Elba, 1990, 1-12, Pitman Res Notes Math Ser, 320. Harlow: Longman Sci Tech, 1995
[2] Agranovich Y Y, Sobolevskii P E. Motion of nonlinear visco-elastic fluid. Nonlin Anal TMA, 1998, 32(6): 755-760
[3] Bae H -O, Wolf J. Existence of strong solutions to the equations of unsteady motion of shear thickening incompressible fluids. Nonlinear Anal Real World Appl, 2015, 23: 160-182
[4] Bárta T. Global existence for an Oldroyd-type model for viscoelastic fluids. Riv Mat Univ Parma, 2013, 4(1): 37-54
[5] Bulí?ek M, Ettwein F, Kaplický P, Pra?ák D. On uniqueness and time regularity of flows of power-law like Non-Newtonian fluids. Math Meth Appl Sci, 2010, 33(16): 1995-2010
[6] Da Veiga H B, Kaplický P, R??i?ka M. Boundary regularity of shear thickening flows. J Math Fluid Mech, 2011, 13: 387-404
[7] Diening L, R??i?ka M, Wolf J. Existence of weak solutions for unsteady motions of generalized Newtonian fluids. Ann Sc Norm Super Pisa Cl Sci, 2010, 9(5)(1): 1-46
[8] Dmitrienko V T, Zvyagin V G. On weak solutions of a regularized model of a viscoelastic fluid. (Russian) Differ Uravn, 2002, 38(12): 1633-1645; translation in Differ Equ, 2002,38(12): 1731-1744
[9] Dmitrienko V T, Zvyagin V G. On strong solutions of an initial-boundary value problem for a regularized model of an incompressible viscoelastic medium. (Russian) Izv Vyssh Uchebn Zaved Mat, 2004, 9: 24-40; translation in Russian Math (Iz VUZ), 2005, 48(9): 21-37
[10] Evans L C. Partial Differential Equations. Amer Math Soc, 1998
[11] Gripenberg G, Londen S O, Staffans O J. Volterra Integral and Functional Equations. Cambridge: Cam- bridge Univ Press, 1990
[12] Gyarmati I. Non-Equilibrium Thermodynamics. Field Theory and Variational Principles. Heidelberg: Springer, 1970
[13] Ladyzhenskaya O A. On some new equations describing dynamics of incompressible fluids and on global solvability of boundary value problems to these equations. Trudy Steklov's Math Institute, 1967, 102: 85-104
[14] Ladyzhenskaya O A. On some modifications of Navier-Stokes equations for large gradients of velocity. Zapiski Nukhnych Seminarov LOMI, 1968, 7: 126-154
[15] Ladyzhenskaya O A. The Mathematical Theory of Viscous Incompressible Flow. New York: Gordon and Breach, 1969
[16] Málek J, Ne?as J, Rokyta M, R??i?ka M. Weak and Measure-Valued Solutions to Evolutionary Partial Differential Equations. Applied Mathematics and Mathematical Computation, Vol 13. Chapman and Hall, 1996
[17] Málek J, Ne?as J, R??i?ka M. On weak solutions to a class of non-newtonian incompressible fluids in bounded three-dimensional domains: the case p ≥ 2. Adv Differ Equ, 2001, 6(3): 257-302
[18] Ne?as J. Sur les normes quivalentes dans Wpk (Ω) et sur la coercivit des formes formellement posi- tives//Sminaire Equations aux Drives Partielles, Montreal, 1966
[19] Orlov V P, Sobolevskii P E. On mathematical models of a viscoelasticity with a memory. Differential and Integral Equations, 1991, 4(1): 103-115
[20] Pokorný M. Navier-Stokes Equations. Teaching script of MFF UK, http://www.karlin.mff.cuni.cz/ poko- rny/NavierandStokes eng.pdf.
[21] Soukup I. Weak Solutions to the Class of Nonlinear Integrodifferential Equations [D]. MFF UK, 2012
[22] Vorotnikov D A, Zvyagin V G. On the convergence of solutions of a regularized problem for the equations of motion of a Jeffery viscoelastic medium to the solutions of the original problem. (Russian) Fundam Prikl Mat, 2005, 11(4): 49-63; translation in J Math Sci (NY), 2007, 144(5): 4398-4408
[23] Wolf J. Existence of weak solutions to the equations of non-stationary motion of non-Newtonian fluids with shear rate dependent viscosity. J Math Fluid Mech, 2007, 9(1): 104-138 |