[1] Napoli M, Bamieh B. Modeling and observer design for an array of electrostatically actuated microcantilevers. Proceedings of the 40th IEEE Conference on Decision and Control, 2001: 4274-4279
[2] Venkat A N, Hiskens I A, Rawlings J B, et al. Distributed output feedback MPC for power system control. Proceedings of the 45th IEEE Conference on Decision and Control. 2006: 4038-4045
[3] Omony J, de Graaff L H, van Straten G, et al. Modeling and analysis of the dynamic behavior of the XlnR regulon in Aspergillus niger. BMC systems biology, 2011, 5(Suppl 1): S14
[4] Bragalli C, D'Ambrosio C, Lee J, et al. Case Studies in Operations Research. New York: Springer, 2015, 212: 183-198
[5] Han X G, Chen Y Z, Shi J J, et al. An extended cell transmission model based on digraph for urban traffic road network. Proceedings of the 15th IEEE Conference on Intelligent Transportation Systems, 2012: 558-563
[6] Yang T C. Networked control system: a brief survey. IEE Proceedings-Control Theory and Applications, 2006, 153(4): 403-412
[7] Heemels W, van de Wouw N. Networked Control Systems. London:Springer, 2010: 203-253
[8] Shang Y. Consensus formation of two-level opinion dynamics. Acta Mathematica Scientia, 2014, 34B(4): 1029-1040
[9] Guo W, Xiao H, Chen S. Consensus of the second-order multi-agent systems with an active leader and coupling time delay. Acta Mathematica Scientia, 2014, 34B(2): 453-465
[10] Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, 95(1): 215-233
[11] Ren W, Cao Y. Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues. London: Springer, 2010
[12] Scardovi L, Arcak M, Sontag E D. Synchronization of interconnected systems with applications to biochemical networks: An input-output approach. IEEE Transactions on Automatic Control, 2010, 55(6): 1367-1379
[13] Liu T, Hill D J, Zhao J. Incremental-dissipativity-based synchronization of interconnected systems. Proceedings of the 18th IFAC World Congress, 2011: 8890-8895
[14] Franci A, Scardovi L, Chaillet A. An Input-Output approach to the robust synchronization of dynamical systems with an application to the Hindmarsh-Rose neuronal model. Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, 2011: 6504-6509
[15] Fradkov A, Junussov I, Ortega R. Decentralized adaptive synchronization in nonlinear dynamical networks with nonidentical nodes. Proceedings of the 2009 IEEE International Symposium on Control Applications and Intelligent Control, 2009: 531-536
[16] Lee S J, Oh K K, Ahn H S. Passivity-based output synchronisation of port-controlled Hamiltonian and general linear interconnected systems. IET Control Theory and Applications, 2013, 7(2): 234-245
[17] Lee S J, Ahn H. Passivity-based output synchronization of interconnected linear systems. Proceedings of the IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications, 2012: 46-51
[18] Russo G. Analysis, Control and synchronization of nonlinear systems and networks via Contraction Theory: theory and applications. Universita degli studi di Napoli Federico II, 2010
[19] Furtat I, Fradkov A, Tsykunov A. Robust synchronization of linear dynamical networks with compensation of disturbances. International Journal of Robust and Nonlinear Control, 2014, 24(17): 2774-2784
[20] Cheng Y, Ugrinovskii V A. Guaranteed performance leader-follower control for multi-agent systems with linear IQC coupling. Proceedings of the 2013 IEEE conference on American Control Conference, 2013: 2625-2630
[21] Ge Y R, Chen Y Z, Zhang Y X, et al. State consensus analysis and design for high-order discrete-time linear multiagent systems. Mathematical Problems in Engineering, 2013: Art ID192351
[22] Chen Y Z, Ge Y R, Zhang Y X. Partial stability approach to consensus problem of linear multi-agent systems. Acta Automatica Sinica, 2014, 40(11): 2573-2584
[23] Vorotnikov V I. Partial Stability and Control. Boston: Springer, 1998
[24] Wang Y G. BMI-based output feedback control design with sector pole assignment. Acta Automatica Sinica, 2008, 34(9): 1192-1195
[25] Fukuda M, Kojima M. Branch-and-cut algorithms for the bilinear matrix inequality eigenvalue problem. Comput Opt Appl, 2001, 19(1): 79-105
[26] Shimomura T, Fujii T. Multiobjective control via successive over-bounding of quadratic terms. International Journal of Robust and Nonlinear Control, 2005, 15(8): 363-381 |