Loading...

Table of Content

    01 November 2015, Volume 35 Issue 6 Previous Issue    Next Issue
    Articles
    REGULARITY FOR A GENERALIZED JEFFREY'S INTEGRAL MODEL FOR VISCOELASTIC FLUIDS
    Ivan SOUKUP
    Acta mathematica scientia,Series B. 2015, 35 (6):  1251-1284.  DOI: 10.1016/S0252-9602(15)30053-9
    Abstract ( 91 )   RICH HTML PDF (362KB) ( 395 )   Save

    We prove a local existence of a strong solution v : Ω× T → R3 for a system of nonlinear integrodifferential equations describing motion of an incompressible viscoelastic fluid using standard mathematical tools. The problem is considered in a bounded, smooth domain Ω⊂ R3 with a Dirichlet boundary condition and a standard initial condition.

    References | Related Articles | Metrics
    ON A CHARACTERIZATION OF THE S-ESSENTIAL SPECTRA OF THE SUM AND THE PRODUCT OF TWO OPERATORS AND APPLICATION TO A TRANSPORT OPERATOR
    Salma CHARFI, Sassia RAHALI
    Acta mathematica scientia,Series B. 2015, 35 (6):  1285-1304.  DOI: 10.1016/S0252-9602(15)30054-0
    Abstract ( 106 )   RICH HTML PDF (235KB) ( 425 )   Save

    In this paper, we develop some operational calculus inspired from the Fredholm operator theory to investigate the S-essential spectra of the sum and the product of two operators acting on a Banach space. Furthermore, we apply the obtained results to determine the S-essential spectra of an integro-differential operator with abstract boundary conditions in L1([-a, a] × [-1, 1]) (a > 0).

    References | Related Articles | Metrics
    CONSENSUS ANALYSIS AND DESIGN OF LINEAR INTERCONNECTED MULTI-AGENT SYSTEMS
    Yangzhou CHEN, Wei LI, Guiping DAI, A.Yu. ALEKSANDROV
    Acta mathematica scientia,Series B. 2015, 35 (6):  1305-1317.  DOI: 10.1016/S0252-9602(15)30055-2
    Abstract ( 97 )   RICH HTML PDF (605KB) ( 524 )   Save

    We deal with the state consensus problem of a general Linear Interconnected Multi-Agent System (LIMAS) under a time-invariant and directed communication topology. Firstly, we propose a linear consensus protocol in a general form, which consists of state feedback of the agent itself and feedback form of the relative states between the agent and its neighbors. Secondly, a state-linear-transformation is applied to equivalently transform the state consensus problem into a partial stability problem. Based on the partial stability theory, we derive a sufficient and necessary criterion of consensus convergence, which is expressed via the Hurwitz stability of a real matrix constructed from the parameters of the agent models and the protocols, and present an analytical formula of the consensus function. Lastly, we propose a design procedure of the gain matrices in the protocol by solving a bilinear matrix inequality.

    References | Related Articles | Metrics
    ITERATIVE REGULARIZATION METHODS FOR NONLINEAR ILL-POSED OPERATOR EQUATIONS WITH M-ACCRETIVE MAPPINGS IN BANACH SPACES
    Ioannis K. ARGYROS, Santhosh GEORGE
    Acta mathematica scientia,Series B. 2015, 35 (6):  1318-1324.  DOI: 10.1016/S0252-9602(15)30056-4
    Abstract ( 98 )   RICH HTML PDF (141KB) ( 214 )   Save

    In this paper, a modified Newton type iterative method is considered for approximately solving ill-posed nonlinear operator equations involving m-accretive mappings in Banach space. Convergence rate of the method is obtained based on an a priori choice of the regularization parameter. Our analysis is not based on the sequential continuity of the normalized duality mapping.

    References | Related Articles | Metrics
    ASYMPTOTIC STABILITY OF TRAVELING WAVES FOR A DISSIPATIVE NONLINEAR EVOLUTION SYSTEM
    Mina JIANG, Jianlin XIANG
    Acta mathematica scientia,Series B. 2015, 35 (6):  1325-1338.  DOI: 10.1016/S0252-9602(15)30057-6
    Abstract ( 83 )   RICH HTML PDF (195KB) ( 460 )   Save

    This paper is concerned with the existence and the nonlinear asymptotic stability of traveling wave solutions to the Cauchy problem for a system of dissipative evolution equations 

    with initial data and end states
    (ξ, θ)(x, 0) = (ξ0, θ0)(x)→ (ξ±, θ±) as x→±∞.
    We obtain the existence of traveling wave solutions by phase plane analysis and show the asymptotic nonlinear stability of traveling wave solutions without restrictions on the coefficients α and v by the method of energy estimates.

    References | Related Articles | Metrics
    A MODIFIED TIKHONOV REGULARIZATION METHOD FOR THE CAUCHY PROBLEM OF LAPLACE EQUATION
    Fan YANG, Chuli FU, Xiaoxiao LI
    Acta mathematica scientia,Series B. 2015, 35 (6):  1339-1348.  DOI: 10.1016/S0252-9602(15)30058-8
    Abstract ( 121 )   RICH HTML PDF (1972KB) ( 677 )   Save

    In this paper, we consider the Cauchy problem for the Laplace equation, which is severely ill-posed in the sense that the solution does not depend continuously on the data. A modified Tikhonov regularization method is proposed to solve this problem. An error estimate for the a priori parameter choice between the exact solution and its regularized approximation is obtained. Moreover, an a posteriori parameter choice rule is proposed and a stable error estimate is also obtained. Numerical examples illustrate the validity and effectiveness of this method.

    References | Related Articles | Metrics
    ON AN EQUATION CHARACTERIZING MULTI-CAUCHY-JENSEN MAPPINGS AND ITS HYERS-ULAM STABILITY
    Anna BAHYRYCZ, Krzysztof CIEPLINSKI, Jolanta OLKO
    Acta mathematica scientia,Series B. 2015, 35 (6):  1349-1358.  DOI: 10.1016/S0252-9602(15)30059-X
    Abstract ( 92 )   RICH HTML PDF (168KB) ( 451 )   Save

    In this paper, we give two characterizations of multi-Cauchy-Jensen mappings. One of them reduces the system of n equations defining these mappings to a single functional equation. We also prove, using the fixed point method, the generalized Hyers-Ulam stability of this equation. Our results generalize some known outcomes.

    References | Related Articles | Metrics
    RAYLEIGH-TAYLOR INSTABILITY FOR COMPRESSIBLE ROTATING FLOWS
    Ran DUAN, Fei JIANG, Fei JIANG
    Acta mathematica scientia,Series B. 2015, 35 (6):  1359-1385.  DOI: 10.1016/S0252-9602(15)30060-6
    Abstract ( 89 )   RICH HTML PDF (303KB) ( 428 )   Save

    In this paper, we investigate the Rayleigh-Taylor instability problem for two compressible, immiscible, inviscid flows rotating with a constant angular velocity, and evolving with a free interface in the presence of a uniform gravitational field. First we construct the Rayleigh-Taylor steady-state solutions with a denser fluid lying above the free interface with the second fluid, then we turn to an analysis of the equations obtained from linearization around such a steady state. In the presence of uniform rotation, there is no natural variational framework for constructing growing mode solutions to the linearized problem. Using the general method of studying a family of modified variational problems introduced in etc|ξ|-1,where ξ is the spatial frequency of the normal mode and the constant c depends on some physical parameters of the two layer fluids. A Fourier synthesis of these normal mode solutions allows us to construct solutions that grow arbitrarily quickly in the Sobolev space Hk, and leads to an ill-posedness result for the linearized problem. Moreover, from the analysis we see that rotation diminishes the growth of instability. Using the pathological solutions, we then demonstrate the ill-posedness for the original non-linear problem in some sense.

    References | Related Articles | Metrics
    A NEW INTEGRAL TRANSFORM AND ITS APPLICATIONS
    H. M. SRIVASTAVA, Minjie LUO, R. K. RAINA
    Acta mathematica scientia,Series B. 2015, 35 (6):  1386-1400.  DOI: 10.1016/S0252-9602(15)30061-8
    Abstract ( 180 )   RICH HTML PDF (209KB) ( 844 )   Save

    In the present paper, the authors introduce a new integral transform which yields a number of potentially useful (known or new) integral transfoms as its special cases. Many fundamental results about this new integral transform, which are established in this paper, include (for example) existence theorem, Parseval-type relationship and inversion formula. The relationship between the new integral transform with the H-function and the H-transform are characterized by means of some integral identities. The introduced transform is also used to find solution to a certain differential equation. Some illustrative examples are also given.

    References | Related Articles | Metrics
    ESSENTIAL NORMS OF PRODUCTS OF WEIGHTED COMPOSITION OPERATORS AND DIFFERENTIATION OPERATORS BETWEEN BANACH SPACES OF ANALYTIC FUNCTIONS
    Jasbir Singh MANHAS, Ruhan ZHAO
    Acta mathematica scientia,Series B. 2015, 35 (6):  1401-1410.  DOI: 10.1016/S0252-9602(15)30062-X
    Abstract ( 99 )   RICH HTML PDF (164KB) ( 496 )   Save

    We obtain several estimates of the essential norms of the products of differentiation operators and weighted composition operators between weighted Banach spaces of analytic functions with general weights. As applications, we also give estimates of the essential norms of weighted composition operators between weighted Banach space of analytic functions and Bloch-type spaces.

    References | Related Articles | Metrics
    NEW WEIGHTED MULTILINEAR OPERATORS AND COMMUTATORS OF HARDY-CESÁRO TYPE
    Ha Duy HUNG, Luong Dang KY
    Acta mathematica scientia,Series B. 2015, 35 (6):  1411-1425.  DOI: 10.1016/S0252-9602(15)30063-1
    Abstract ( 106 )   RICH HTML PDF (222KB) ( 446 )   Save

    This paper deals with a general class of weighted multilinear Hardy-Cesàro operators that acts on the product of Lebesgue spaces and central Morrey spaces. Their sharp bounds are also obtained. In addition, we obtain sufficient and necessary conditions on weight functions so that the commutators of these weighted multilinear Hardy-Cesàro operators (with symbols in central BMO spaces) are bounded on the product of central Morrey spaces. These results extends known results on multilinear Hardy operators.

    References | Related Articles | Metrics
    MOMENTS OF PASSAGE TIMES AND ASYMPTOTIC BEHAVIOR OF INCREASING SELF-SIMILAR MARKOV PROCESSES
    Wei HU, Luqin LIU
    Acta mathematica scientia,Series B. 2015, 35 (6):  1426-1436.  DOI: 10.1016/S0252-9602(15)30064-3
    Abstract ( 73 )   RICH HTML PDF (189KB) ( 364 )   Save

    By using Lamperti's bijection between self-similar Markov processes and Lévy processes, we prove finiteness of moments and asymptotic behavior of passage times for increasing self-similar Markov processes valued in (0,∞). We also investigate the behavior of the process when it crosses a level. A limit theorem concerning the distribution of the process immediately before it crosses some level is proved. Some useful examples are given.

    References | Related Articles | Metrics
    THE SUFFICIENT EFFICIENCY CONDITIONS IN SEMIINFINITE MULTIOBJECTIVE FRACTIONAL PROGRAMMING UNDER HIGHER ORDER EXPONENTIAL TYPE HYBRID TYPE INVEXITIES
    Ram U. VERMA
    Acta mathematica scientia,Series B. 2015, 35 (6):  1437-1453. 
    Abstract ( 60 )   RICH HTML PDF (232KB) ( 383 )   Save

    First, a class of higher order exponential type hybrid (α, β, γ, η, ρ, h(·,·), κ(·,·), ω(·,·,·), ω(·,·,·), θ)-invexities is introduced, second, some parametrically sufficient efficiency conditions based on the higher order exponential type hybrid invexities are established, and finally some parametrically sufficient efficiency results under the higher order exponential type hybrid (α, β, γ, η, ρ, h(·,·), κ(·,·), ω(·,·,·), ω(·,·,·), θ)-invexities are investigated to the context of solving semiinfinite multiobjective fractional programming problems. The notions of the higher order exponential type hybrid (α, β, γ, η, ρ, h(·,·), κ(·,·), ω(·,·,·), ω(·,·,·), θ)-invexities encompass most of the generalized invexities in the literature. To the best of our knowledge, the results on semiinfinite multiobjective fractional programming problems established in this communication are new and application-oriented toward multitime multiobjectve problems as well as multiobjective control problems.

    References | Related Articles | Metrics
    THE INVARIANCE OF STRONG AND ALMOST SPIRALLIKE MAPPINGS OF TYPE β AND ORDER α
    Yanyan CUI, Chaojun WANG, Hao LIU
    Acta mathematica scientia,Series B. 2015, 35 (6):  1454-1466.  DOI: 10.1016/S0252-9602(15)30066-7
    Abstract ( 66 )   RICH HTML PDF (187KB) ( 354 )   Save

    The invariance of strong and almost spirallike mappings of type β and order α is discussed in this paper. From the maximum modulus principle of holomorphic functions, we obtain that the generalized Roper-Suffridge operators preserve strong and almost spirallikeness of type β and order α on the unit ball Bn in Cn and on bounded and complete Reinhardt domains. Therefore we obtain that the generalized Roper-Suffridge operators preserve strong spirallikeness of type β, strong and almost starlikeness of order α, strong starlikeness on the corresponding domains.Thus we can construct more subclasses of spirallike mappings in several complex variables.

    References | Related Articles | Metrics
    INTERPOLATION OF LORENTZ-ORLICZ MARTINGALE SPACES
    Chuanzhou ZHANG, Yu PAN, Xueying ZHANG
    Acta mathematica scientia,Series B. 2015, 35 (6):  1467-1474.  DOI: 10.1016/S0252-9602(15)30067-9
    Abstract ( 86 )   RICH HTML PDF (163KB) ( 261 )   Save

    In this paper, we apply function parameters to real interpolation of Lorentz-Orlicz martingale spaces. Some new interpolation theorems are formulated which generalize some known results in Lorentz spaces Λα introduced by Sharpley.

    References | Related Articles | Metrics
    ON THE BOUNDEDNESS AND THE NORM OF A CLASS OF INTEGRAL OPERATORS
    Lifang ZHOU
    Acta mathematica scientia,Series B. 2015, 35 (6):  1475-1482.  DOI: 10.1016/S0252-9602(15)30068-0
    Abstract ( 85 )   RICH HTML PDF (162KB) ( 254 )   Save

    The boundedness and the norm of a class of integral operators Ta, b, c Lλp spaces are studied in this paper. The author not only gives the sufficient and necessary condition for the boundedness of Ta, b, c on Lλp, but also obtains its accurate norm on Lλp for some range under the condition of c = n + a + b.

    References | Related Articles | Metrics
    A NOTE ON THE REPRESENTATIONS FOR THE GENERALIZED DRAZIN INVERSE OF BLOCK MATRICES
    Dijana MOSIC
    Acta mathematica scientia,Series B. 2015, 35 (6):  1483-1491.  DOI: 10.1016/S0252-9602(15)30069-2
    Abstract ( 75 )   RICH HTML PDF (143KB) ( 537 )   Save

    We present some representations for the generalized Drazin inverse of a block matrix x= in a Banach algebra A in terms of ad and (bc)d under certain conditions, extending some recent result related to the generalized Drazin inverse of an anti-triangular operator matrix. Also, several particular cases of this result are considered.

    References | Related Articles | Metrics
    STABILITY OF SOME POSITIVE LINEAR OPERATORS ON COMPACT DISK
    M. MURSALEEN, Khursheed J. ANSARI, Asif KHAN
    Acta mathematica scientia,Series B. 2015, 35 (6):  1492-1500.  DOI: 10.1016/S0252-9602(15)30070-9
    Abstract ( 75 )   RICH HTML PDF (172KB) ( 251 )   Save

    Recently, Popa and Rasa [27, 28] have shown the (in)stability of some classical operators defined on [0, 1] and found best constant when the positive linear operators are stable in the sense of Hyers-Ulam. In this paper we show Hyers-Ulam (in)stability of complex Bernstein-Schurer operators, complex Kantrovich-Schurer operators and Lorentz operators on compact disk. In the case when the operator is stable in the sense of Hyers and Ulam, we find the infimum of Hyers-Ulam stability constants for respective operators.

    References | Related Articles | Metrics
    QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN BANACH SPACES
    Choonkil PARK
    Acta mathematica scientia,Series B. 2015, 35 (6):  1501-1510.  DOI: 10.1016/S0252-9602(15)30071-0
    Abstract ( 76 )   RICH HTML PDF (147KB) ( 405 )   Save

    In this paper, we solve the quadratic ρ-functional inequalities
    ||f(x + y) + f(x y) 2f(x)2f(y)||≤||ρ(2f((x+y)/2)+2f((x-y)/2)f(x) f(y)||, (0.1)
    where ρ is a fixed complex number with |ρ|< 1, and
    ||2f((x+y)/2)+2f((x-y)/2)f(x) f(y)||≤||ρf(x + y) + f(x y) 2f(x)2f(y)||, (0.2)
    where ρ is a fixed complex number with |ρ|< 1/2 .Using the direct method, we prove the Hyers-Ulam stability of the quadratic ρ-functional inequalities (0.1) and (0.2) in complex Banach spaces and prove the Hyers-Ulam stability of quadratic -functional equations associated with the quadratic ρ-functional inequalities (0.1)and (0.2) in complex Banach spaces.

    References | Related Articles | Metrics
    BLOWING UP AND MULTIPLICITY OF SOLUTIONS FOR A FOURTH-ORDER EQUATION WITH CRITICAL NONLINEARITY
    Siwar AMMAR, Mokhles HAMMAMI
    Acta mathematica scientia,Series B. 2015, 35 (6):  1511-1546.  DOI: 10.1016/S0252-9602(15)30072-2
    Abstract ( 93 )   RICH HTML PDF (346KB) ( 478 )   Save

    In this paper, we consider the following nonlinear elliptic problem : △2u = |u|8/(n-4)u + μ|u|q-1u, in Ω, △u = u = 0 on Ω, where Ω is a bounded and smooth domain in Rn, n ∈ {5, 6, 7}, μ is a parameter and q ∈[4/(n 4), (12 n)/(n 4)]. We study the solutions which concentrate around two points of Ω. We prove that the concentration speeds are the same order and the distances of the concentration points from each other and from the boundary are bounded. For Ω = (Ωa)a a smooth ringshaped open set, we establish the existence of positive solutions which concentrate at two points of Ω. Finally, we show that for μ > 0, large enough, the problem has at least many positive solutions as the LjusternikSchnirelman category of Ω.

    References | Related Articles | Metrics
    THEORY AND APPLICATION OF FRACTIONAL STEP CHARACTERISTIC FINITE DIFFERENCE METHOD IN NUMERICAL SIMULATION OF SECOND ORDER ENHANCED OIL PRODUCTION
    Yirang YUAN, Aijie CHENG, Danping YANG, Changfeng LI
    Acta mathematica scientia,Series B. 2015, 35 (6):  1547-1565.  DOI: 10.1016/S0252-9602(15)30073-4
    Abstract ( 69 )   RICH HTML PDF (1494KB) ( 371 )   Save

    A kind of second-order implicit fractional step characteristic finite difference method is presented in this paper for the numerically simulation coupled system of enhanced (chemical) oil production in porous media. Some techniques, such as the calculus of variations, energy analysis method, commutativity of the products of difference operators, decomposition of high-order difference operators and the theory of a priori estimates are introduced and an optimal order error estimates in l2 norm is derived. This method has been applied successfully to the numerical simulation of enhanced oil production in actual oilfields, and the simulation results are quite interesting and satisfactory.

    References | Related Articles | Metrics
    ADDITIVE PERTURBATIONS OF LOCAL C-SEMIGROUPS
    Chung-Cheng KUO
    Acta mathematica scientia,Series B. 2015, 35 (6):  1566-1576.  DOI: 10.1016/S0252-9602(15)30074-6
    Abstract ( 73 )   RICH HTML PDF (169KB) ( 223 )   Save

    In this paper, we apply the contraction mapping theorem to establish some bounded and unbounded additive perturbation theorems concerning local C-semigroups. Some growth conditions of perturbations of local C-semigroups are also established.

    References | Related Articles | Metrics