Acta mathematica scientia,Series B ›› 2017, Vol. 37 ›› Issue (5): 1281-1294.doi: 10.1016/S0252-9602(17)30073-5
• Articles • Previous Articles Next Articles
Jianjun HUANG, Zhenglu JIANG
Received:
2016-05-25
Revised:
2017-04-27
Online:
2017-10-25
Published:
2017-10-25
Contact:
Zhenglu JIANG,E-mail:mcsjzl@mail.sysu.edu.cn
E-mail:mcsjzl@mail.sysu.edu.cn
Supported by:
This work is supported by NSFC (11171356).
Jianjun HUANG, Zhenglu JIANG. AVERAGE REGULARITY OF THE SOLUTION TO AN EQUATION WITH THE RELATIVISTIC-FREE TRANSPORT OPERATOR[J].Acta mathematica scientia,Series B, 2017, 37(5): 1281-1294.
[1] Andréasson H. Regularity of the gain term and strong L1 convergence to the equilibrium for the relativistic Boltzmann equation. SIAM J Math Anal, 1996, 27:1386-1405 [2] Andréasson H, Calogero S, Illner R. On blowup for gain-term-only classical and relativistic Boltzmann equations. Math Methods Appl Sci, 2004, 27:2231-2240 [3] Bachouri H, Chemin J, Danchin R. Fourier Analysis and Nonlinear Partial Differential Equations. Berlin Heidelberg:Springer-Verlag, 2011 [4] Bergh J, Lofstrom J. Interpolation Spaces, New York, Berlin:Springer-Verlag, 1976 [5] Bichteler K. On the Cauchy problem of the relativistic Boltzmann equations. Commun Math Phys, 1967, 4:352-364 [6] Bouchut F, Golse F, Pulvirenti M. Kinetic Equations and Asymptotic Theory. Ser Appl Math (Paris). Paris:Gauthiers-Villars, 2000 [7] Bouchut F, Desvillettes L. Averaging lemmas without time Fourier transform and application to discretized kinetic equations. Proc Roy Soc Edinburgh Sect A, 1999, 129:19-36 [8] de Groot S R, van Leeuwen W A, van Weert Ch G. Relativistic Kinetic Theory. Amsterdam:North-Holland, 1980 [9] Debbasch F, Leeuwen W A V. General relativistic Boltzmann equation, 1:covariant treatment. Phys A:Stat Mech Appl, 2009, 388:1079-1104 [10] Debbasch F, Leeuwen W A V. General relativistic Boltzmann equation, 2:manifestly covariant treatment. Phys A:Stat Mech Appl, 2009, 388:1818-1834 [11] Denicol G S, Ulrich H, Mauricio M, Jorge N, Michael S. A new exact solution of the relativistic Boltzmann equation and its hydrodynamic limit. Phys Review Lett, 2014, 113(20):202301-202301 [12] DiPerna R J, Lions P L. On the Cauchy problem for Boltzmann equations:global existence and weak stability. Ann Math, 1989, 130:321-366 [13] Dolan P, Zenios A C. A construction of the general relativistic Boltzmann equation. Int J Math Math Sci, 1984, 7:591-597 [14] Dudyński M, Ekiel-Je·zewska M L. On the linearized relativistic Boltzmann equation 1:existence of solutions. Commun Math Phys, 1988, 115:607-629 [15] Dudyński M, Ekiel-Je·zewska M L. Global existence proof for the relativistic Boltzmann equation. J Stat Phys, 1992, 66:991-1001 [16] Esobedo M, Michler S, Valle M A. Homogeneous Boltzmann equation in quantum relativistic kinetic theory. Electronic J Differ Equ, 2003, 4:1-85 [17] Glassey R. Global solutions to the Cauchy problem for the relativistic Boltzmann equation with nearvacuum data. Commun Math Phys, 2006, 264:705-724 [18] Glassey R. Strauss W A. Asymptotic stability of the relativistic Maxwellian. Publ Res Inst Math Sci, 1993, 29:301-347 [19] Glassey R, Strauss W A. Asymptotic stability of the relativistic Maxwellian via fourteen moments. Trans Theory Stat Phys, 1995, 24:657-678 [20] Golse F, Lions P L, Perthame B, Sentis R. Regularity of the moments of the solution of a transport equation. J Funct Anal, 1988, 76:110-125 [21] Ha S, Kim Y, Lee H, Noh S. Asympotic completeness for relativistic kinetic equations with short-range interaction forces. Meth Appl Anal, 2007, 14:251-262 [22] Hsiao L, Yu H. Asympotic stability of relativistic Maxwellian. Math App Sci, 2006, 29:1481-1499 [23] Israel W. Relativistic kinetic theory of simple gas. J Math Phys, 1963, 4:1163-1181 [24] Lichnerowicz A, Marrot R. Propriétés statistiques des ensembles de particules en relativité restreinte. Compt Rend Acad Sci (Paris), 1940, 210:759-761 [25] Liu S Q, Xiao Q H. The relativistic Vlasov-Maxwell-Boltzmann system for short range interaction. Kinet Relat Mod, 2016, 9:515-550 [26] Jiang Z. Compactness related to the transport operator of the relaivistic Boltzmann equation. Acta Math Sci (in Chinese), 1997, 17A(3):330-335 [27] Jiang Z. On the relatvistic Boltzmann equation. Acta Math Sci, 1998, 13:348-360 [28] Jiang Z. Existence of global solution to the Cauchy problem for the relativistic Boltzmann equation in a periodic box. Acta Math Sci, 1998, 18:375-384 [29] Jiang Z. On the Cauchy problem for the relatvistic Boltzmann equationin a periodic box:global existence. Trans Theory Stat Phys, 1999, 28:617-628 [30] Jiang Z. Global existence proof for relativistic Boltzmann equation with hard interactions. J Stat Phys, 2008, 130:535-544 [31] Jüttner F. Das Maxwellsche Gesetz der Geschwindigkeitsverteilung in der Relativitheorie. Ann Phys, 1911, 34:856-882 [32] Rein G. Global weak solutions to the relativistic Vlasov-Maxwell system revisited. Comm Math Sci, 2004, 2:145-158 [33] Strain R M. Global Newtonian limit for the relativistic Boltzmann equation near vacuum. SIAM J Math Anal, 2010, 42(4):1568-1601 [34] Strain R M. Asymptotic stability of the relativistic Boltzmann equantion for the soft potentials. Commun Math Phys, 2010, 300(2):529-597 [35] Strain R M. Coordinates in the relativistic Boltzmann theory. Kinet Relat Mod, 2011, 4(1):345-359 [36] Stewart J. Non-equilibrium Relativistic Kinetic Theory, Vol 10, Lectures Notes in Physics. Berlin:SpringerVerlag, 1971 [37] Triebel H. Interpolation Theory, Function Spaces, Differential Operators. Amsterdam:North-Holland, 1978 [38] Tsumura K, Kunihiro T. Derivation of relativistic hydrodynamic equation consitient with relativistic Boltzmann equation by renormalizatio-group method. Eur Phys J A, 2012, 48:162-173 |
[1] | Feimin HUANG, Yong WANG. MACROSCOPIC REGULARITY FOR THE BOLTZMANN EQUATION [J]. Acta mathematica scientia,Series B, 2018, 38(5): 1549-1566. |
[2] | Jae-Myoung KIM. LOCAL REGULARITY CRITERIA OF A SUITABLE WEAK SOLUTION TO MHD EQUATIONS [J]. Acta mathematica scientia,Series B, 2017, 37(4): 1033-1047. |
[3] | Feng CHENG, Wei-Xi LI, Chao-Jiang XU. GEVREY REGULARITY WITH WEIGHT FOR INCOMPRESSIBLE EULER EQUATION IN THE HALF PLANE [J]. Acta mathematica scientia,Series B, 2017, 37(4): 1115-1132. |
[4] | Soumaya SÂANOUNI, Nihed TRABELSI. A BIFURCATION PROBLEM ASSOCIATED TO AN ASYMPTOTICALLY LINEAR FUNCTION [J]. Acta mathematica scientia,Series B, 2016, 36(6): 1731-1746. |
[5] | Salma CHARFI, Sassia RAHALI. ON A CHARACTERIZATION OF THE S-ESSENTIAL SPECTRA OF THE SUM AND THE PRODUCT OF TWO OPERATORS AND APPLICATION TO A TRANSPORT OPERATOR [J]. Acta mathematica scientia,Series B, 2015, 35(6): 1285-1304. |
[6] | Lan LUO, Hongjun YU. BOUNDED SOLUTION OF THE RELATIVISTIC BOLTZMANN EQUATION [J]. Acta mathematica scientia,Series B, 2015, 35(4): 777-786. |
[7] | Yunguang LU, Christian KLINGENBERG, Ujjwal KOLEY, Xuezhou LU. DECAY RATE FOR DEGENERATE CONVECTION DIFFUSION EQUATIONS IN BOTH ONE AND SEVERAL SPACE DIMENSIONS [J]. Acta mathematica scientia,Series B, 2015, 35(2): 281-302. |
[8] | YE Zhuan. A NOTE ON GLOBAL WELL-POSEDNESS OF SOLUTIONS TO BOUSSINESQ EQUATIONS WITH FRACTIONAL DISSIPATION [J]. Acta mathematica scientia,Series B, 2015, 35(1): 112-120. |
[9] | YANG Wan-Rong, JIU Quan-Sen. GLOBAL REGULARITY FOR MODIFIED CRITICAL DISSIPATIVE QUASI-GEOSTROPHIC EQUATIONS [J]. Acta mathematica scientia,Series B, 2014, 34(6): 1741-1748. |
[10] | Leszek GASINSKI, Nikolaos S. PAPAGEORGIOU. POSITIVE SOLUTIONS FOR PARAMETRIC EQUIDIFFUSIVE p-LAPLACIAN EQUATIONS [J]. Acta mathematica scientia,Series B, 2014, 34(3): 610-618. |
[11] | ZHAO Ji-Hong, LIU Qiao. LOGARITHMICALLY IMPROVED REGULARITY CRITERION FOR THE 3D GENERALIZED MAGNETO-HYDRODYNAMIC EQUATIONS [J]. Acta mathematica scientia,Series B, 2014, 34(2): 568-574. |
[12] | Mirjana STOJANOVIC. REGULARITY OF SOLUTIONS TO NONLINEAR TIME FRACTIONAL DIFFERENTIAL EQUATION [J]. Acta mathematica scientia,Series B, 2013, 33(6): 1721-1735. |
[13] | LUO Hong, PU Zhi-Lin. EXISTENCE AND REGULARITY OF SOLUTIONS TO MODEL FOR LIQUID MIXTURE OF 3HE-4HE [J]. Acta mathematica scientia,Series B, 2012, 32(6): 2161-2175. |
[14] | QIU Ya-Lin. REGULARITY FOR NONLINEAR ELLIPTIC SYSTEMS WITH DINI COEFFICIENTS UNDER NATURAL GROWTH CONDITION FOR THE CASE: 1 <m <2 [J]. Acta mathematica scientia,Series B, 2012, 32(5): 1937-1958. |
[15] | CHEN Xiao-Li, YANG Jian-Fu. REGULARITY AND SYMMETRY OF SOLUTIONS OF AN INTEGRAL SYSTEM [J]. Acta mathematica scientia,Series B, 2012, 32(5): 1759-1780. |
|