[1] Abdelmoumen B, Dehici A, Jeribi A, Mnif M. Some New Properties of Fredholm theory, essential spectra and application to transport theory. J Ineq Appl, 2008, 2008: Article ID 852676
[2] Abdelmoumen B, Jeribi A, Mnif M. On the fredholm theory associated with measure of weak noncompactness, invariance of the schechter essential spectrum and application to transport operators. Math Nachr (submitted 2008)
[3] Abdmouleh F, Jeribi A. Symmetric family of Fredholm operators of indices zero, stability of essential spectra and application to transport operators. J Math Anal Appl, 2010, 364: 414–423
[4] Abramovich Y, Aliprantis C D. An Invitation to Operator Theory. Grad Stud Math 50. Providence RI: Amer Math Soc, 2002
[5] Aiena P. Fredholm and Local Spectral Theory, with Applications to Multipliers. Dordrecht: Kluwer Acad Publ, 2004
[6] Aiena P. Semi-Fredholm operators, perturbation theory and localized SVEP. Venez, 2 Al 7 de Septiembre de 2007
[7] Bana´s J, Geobel K. Measures of Noncompactness in Banach Spaces. Lect Notes in Pure and Appl Math Vol 60. New York: Marcel Dekker, 1980: 259–262
[8] Bana´s J, Rivero J. On measures of weak noncompactness. Ann Mat Pura Appl, 1988, 151: 213–224
[9] Caradus S R, Plaffenberger W E, Yood B. Calking Algebras and Algebras of Operators on Banach Spaces. Lecture Notes Vol 9. New York: Marcel Dekker, 1974
[10] De Blasi F S. On a property of the unit sphere in a Banach space. Bull Math Soc Sci Math R S Roum, 1977, 21(69)(3-4): 259–262
[11] Duderstart J J, Martin W R. Transport Theory. New York: John Willey, 1979
[12] Dunford N, Schwartz J T. Linear Operators. Part I: General theory. New York: Interscience Publishers, Inc, 1958
[13] Gramsch B, Lay D. Spectral mapping theorems for essential spectra. Math Ann, 1971, 192: 17–32
[14] Greenberg W, Van der Mee C, Protopopescu V. Boundary Value Problems in Abstract Kinetic Theory. Boston: Birkhäuser Verlag, 1987
[15] Gustafson K, Weidmann J. On the essential spectrum. J Math Anal Appl, 1969, 25: 121–127
[16] Israel R B. Perturbations of Fredholm operators. Studia Math, 1974, 52: 1–8
[17] Jeribi A. Une nouvelle caractérisation du spectre essentiel et application. C R Acad Sci Paris Sér I, 2000, 331: 525–530
[18] Jeribi A. A characterization of the essential spectrum and application. Bolletino U M I, 2002, (8) 5-B: 805–825
[19] Jeribi A. A characterization of the Schechter essential spectrum on Banach spaces and applications. J Math Anal Appl, 2002, 271: 343–358
[20] Jeribi A, Mnif M. Fredholm operators, essential spectra and application to transport equations. Acta Appl Math, 2005, 89: 155–176
[21] Kaper H G, Lekkerkerker C G, Hejtmanek J. Spectral Methods in Linear Transport Theory. Basel: Birkhäuser, 1982
[22] Kato T. Perturbation Theory for Linear Operators. New York: Springer-Verlag, 1966
[23] Lindenstrauss J, Tzafriri L. Classical Banach Spaces I. Berlin, Heidelberg, New York: Springer-Verlag, 1977
[24] Milovanovi´c-Arandjelovi´c M M. Measures of noncompactness on uniform spaces- the axiomatic approach. IMC “Filomat 2001”, Niˇs, 2001: 221–225
[25] Mokhtar-Kharroubi M. Time asymptotic behaviour and compactness in neutron transport theory. Europ J Mech B Fluid, 1992, 11: 39–68
[26] Nussbaum R D. Spectral mapping theorems and perturbation theorem for Browder’s essential spectrum. Trans Amer Math Soc, 1970, 150: 445–455
[27] Schechter M. Principles of Functional Analysis. New York: Academic Press, 1971
[28] Voigt J. Spectral properties of the neutron transport equation. J Math Anal Appl, 1985, 106(1): 140–153
[29] Wing M. An Introduction to Transport Theory. New York: John Wiley and Sons Inc, 1962 |