[1] Aronson D G. The Porous Medium Equation//Lecture notes in Mathematics. Berlin/New York: Springer- Verlag, 1985, 1224
[2] Bustos M C, Concha F, Bürger R, Tory E M. Sedimentation and thickening, volume 8 of Mathematical Modelling: Theory and Applications. Kluwer Academic Publishers, Dordrecht, 1999. Phenomenological foundation and mathematical theory
[3] Oleinik O A, Kalashnikov A S, Chzou Yui-lin. The Cauchy problem and boundary problems for equations of the type of unsteady filtration. Izv Ahad Nauk SSR Ser Math, 1958, 22: 667-704
[4] Escobedo M, Zuazua E. Large time behaviour for convection-diffusion equations in Rn. J Funct Anal, 1991, 100: 119-161
[5] Escobedo M, Vazquez J L, Zuazua E. Asymptotic behaviour and source type solutions for a diffusionconvection equation. Arch Rational Mech Anal, 1993, 124: 43-65
[6] Laurencot P H. Large time behaviour for diffusion equations with fast convection. Annali di Matematica pura ed applicata, 1998, 175: 233-251
[7] Liu T P, Pierre M. Source solutions and asymptotic behaviour in conservation laws. J Differ Equas, 1984, 51: 419-441
[8] Laurencot P H, Simondon F. Large time behaviour for porous medium equations with convection. Proc Royal Soc Edinburgh, 1998, 128A: 315-336
[9] Aronson D G. Regularity properties of flows through porous media. SIAM J Appl Math, 1969, 17: 461-467
[10] Jäger W, Lu Y G. Global regularity of solutions for general degenerate parabolic equations in 1-D. J Differ Equas, 1997, 140: 365-377
[11] Jäger W, Lu Y G. Hölder estimates of solutions for degenerate parabolic equations. Preprint 96-18, SISSA, Trieste and Abstract of the Workshop Hyperbolic Systems of Conservation Laws, Oberwolffach, Germany, April 28- May 4, 1996
[12] Smoller J A. Shock Waves and Reaction-Diffusion Equations. New York/Heidelberg/Berlin: Springer- Verlag, 1982
[13] Caffarelli L A, Vazquez J L, Wolanski N I. Lipschitz continuity of solutions and interfaces of the Ndimensional porous medium equation. Indiana Univ Math J, 1987, 36: 373-401
[14] Jäger W, Lu Y G. On solutions to Nonlinear Reaction-Diffusion-Convection Equations with Degenerate Diffusion. J Differ Equas, 2001, 170: 1-21
[15] Friedman A. Partial Differential Equations of Parabolic type. Prentice-Hall, Englewood Cliffs, NJ, 1964
[16] Itaya N. On the temporally global problem of the generalized Burgers' equation. J Math Kyoto University, 1974, 14: 129-177
[17] Ladyzhenskaya O A, Solonnikov V A, Ural'ceva N N. Linear and Quasilinear Equations of Parabolic Type//Translation of Mathematical Monographs, Vol 23. Providence, RI: Amer Math Soc, 1968
[18] Nash J. Le probleme de Cauchy pour les equations differentielles d'un iuide general. Bull Soc Math France, 1962, 90: 487-497
|