[1] Dai M M, Schonbek M E. Asymptotic behavior of solutions to the liquid crystals systems in Hm(R3). SIAM J Math Anal, 2014, 46:3131-3150
[2] Dai M M, Qing J, Schonbek M E. Asymptotic behavior of solutions to the liquid crystals systems in R3. Comm Partial Differ Equ, 2012, 37:2138-2164
[3] Duan R J, Ukai S, Yang T, Zhao H J. Optimal convergence rate for compressible Navier-Stokes equations with potential force. Math Models Methods Appl Sci, 2007, 17:737-758
[4] Ericksen J L. Conservation laws for liquid crystals. Trans Soc Rheol, 1961, 5:22-34
[5] Ericksen J L. Continuum theory of nematic liquid crystals. Res Mechanica, 1987, 21:381-392
[6] Feng Y H, Peng Y J, Wang S. Asymptotic behavior of global smooth solutions for full compressible Navier-Stokes-Maxwell equations. Nonlinear Anal Real, 2014, 19:105-116
[7] Gao J C, Chen Y H, Yao Z A. Long-time behavior of solution to the compressible magnetohydrodynamic equations. Nonlinear Anal, 2015, 128:122-135
[8] Guo Y, Wang Y J. Decay of dissipative equations and negative Sobolev spaces. Comm Partial Differ Equ, 2012, 37:2165-2208
[9] Hu X P,Wang D H. Global solution to the three-dimensional incompressible flow of liquid crystals. Commun Math Phys, 2010, 296:861-880
[10] Hu X P, Wu H. Long-time dynamics of the nonhomogeneous incompressible flow of nematic liquid crystals. Commun Math Sci, 2013, 11:779-806
[11] Jiang F, Tan Z. Global weak solution to the flow of liquid crystals system. Math Meth Appl Sci, 2009, 32:2243-2266
[12] Ju N. Existence and uniqueness of the solution to the dissipative 2D Quasi-Geostrophic equations in the Sobolev space. Comm Math Phys, 2004, 251:365-376
[13] Kagei Y, Kobayashi T. On large time behavior of solutions to the compressible Navier-Stokes equations in the half space in R3. Arch Ration Mech Anal, 2002, 165:89-159
[14] Hardt R, Kinderlehrer D, Lin F H. Existence and partial regularity of static liquid crystal configurations. Comm Math Phys, 1986, 105:547-570
[15] Kobayashi T. Some estimates of solutions for the equations of motion of compressible viscous fluid in the three-dimensional exterior domain. J Differ Eqnas, 2002, 184:587-619
[16] Kobayashi T, Shibata Y. Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in R3. Comm Math Phys, 1999, 200:621-659
[17] Leslie F M. Some Contitutive Equations for liquid crystals. Arch Rational Mech Anal, 1968, 28:265-283
[18] Leslie F M. Theory of flow phenomena in liquid crystals//Brown G, ed. Advances in Liquid Crystals, Vol 4. New York:Academic Press, 1979:1-81
[19] Lin F H, Liu C. Existence of solutions for the Ericksen-Leslie system. Arch Rational Mech Anal, 2000, 154:135-156
[20] Li H L, Yang T, Zou C. Time asymptotic behavior of the bipolar Navier-Stokes-Poisson system. Acta Math Sci, 2009, 29B:1721-1736
[21] Liu X G, Zhang Z Y. Existence of the flow of liquid crystals system. Chin Ann Math, 2009, 30A:1-20
[22] Nirenberg L. On elliptic partial differential equations. Ann Scuola Norm Sup Pisa, 1959, 13:115-162
[23] Ponce G. Global existence of small solution to a class of nonlinear evolution equations. Nonl Anal, 1985, 9:399418
[24] Schonbek M E. On the decay of higher-order norms of the solutions of Navier-Stokes equations. Proc Royal Soc Edin, 1996, 126A:677-685
[25] Stein E M. Singular Integrals and Differentiability Properties of Functions. Princeton University Press, 1970
[26] Tan Z, Wang H Q. Optimal decay rates of the compressible magnetohydrodynamic equations. Nonlinear Anal Real, 2013, 14:188-201
[27] Tan Z, Wang Y J Global solution and large-time behavior of the 3D compressible Euler equations with damping. J Differ Equ, 2013, 254:1686-1704
[28] Tan Z, Wu G C. Large time behavior of solutions for compressible Euler equations with damping in R3. J Differ Equ, 2012, 252:1546-1561
[29] Wang Y J. Decay of the Navier-Stokes-Poisson equations. J Differ Equ, 2012, 253:273-297
[30] Wei R Y, Li Y, Yao Z A. Decay of the compressible magnetohydrodynamic equations. Z Angew Math Phys, 2015, 66:2499-2524
[31] Wei R Y, Li Y, Yao Z A. Decay of the nematic liquid crystal system. Math Methods Appl Sci, 2016, 39:452-474
[32] Wu H. Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows. Discrete Contin Dyn Syst, 2010, 26:379-396 |