[1] Beale J, Kato T, Majda A. Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Comm Math Phys, 1984, 94: 61–66
[2] Constantin P, Vicol V. Nonlinear maximum principles for dissipative linear nonlocal operators and applications.
Geom Funct Anal, 2012, 22(5): 1289–1321
[3] Constantin P, Wu J. H¨older continuity solutions of the supercritical disspative hydrodynamic transport equations. Ann Inst H Poincar´e Anal Non Lin´eaire, 2009, 26: 159–180
[4] Constantin P,Wu J. Regularity of H¨older continuous solutions of the supercritical quasi-geostrophic eqution. Ann Inst H Poincar´e Anal Non Lin´eaire, 2008, 25: 1103–1110
[5] Constantin P, Iyer G, Wu J. Global regularity or a modified critical dissipative quasi-geostrophic equation. Indiana Univ Math J, 2008, 57: 2681–2692
[6] Caffarelli L, Vasseur A. Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann Math, 2010, 171(3): 1903–1930
[7] C¨orfoba A, C¨ordoba D. Amaximum principle applied to quasi-geostrophic equations. Math Phys, 2004, 249: 511–528
[8] Jiu Q, Miao C,Wu J, Zhang Z. The 2D incompressible Boussinesq equations with general critical dissipation. 2012, arXiv: 1212.3227v1
[9] Kiselev A, Nazarov F, Volberg A. Global well-posedness foe the critical 2D dissipative quasi-geostrophic equation. Invent Math, 2007, 167: 445–453
[10] Majda A, Bertozzi A. Vorticity and Incompressible Flow. Cambridge, England: Cambridge University Press, 2002 |