Acta mathematica scientia,Series B ›› 2021, Vol. 41 ›› Issue (4): 1130-1140.doi: 10.1007/s10473-021-0407-7
• Articles • Previous Articles Next Articles
Qin WANG1, Kyungwoo SONG2
Received:
2020-02-13
Revised:
2020-05-14
Online:
2021-08-25
Published:
2021-09-01
Contact:
Kyungwoo SONG
E-mail:kyusong@khu.ac.kr
Supported by:
CLC Number:
Qin WANG, Kyungwoo SONG. SHOCK DIFFRACTION PROBLEM BY CONVEX CORNERED WEDGES FOR ISOTHERMAL GAS[J].Acta mathematica scientia,Series B, 2021, 41(4): 1130-1140.
[1] Bae M, Chen G Q, Feldman M. Regularity of solutions to regular shock reflection for potential flow. Invent Math, 2009, 175:505-543 [2] Bae M, Chen G Q, Feldman M. Prandtl-Meyer reflection configurations, transonic shocks, and free boundary problems. arXiv:1901.05916 [3] Čanić S, Keyfitz B L. An elliptic problem arising from the uns teady transonic small disturbance equation. J Differ Equ, 1996, 125:548-574 [4] Čanić S, Keyfitz B L, Kim E H. Free boundary problems for nonli near wave equations:Mach stems for interacting shocks. SIAM J Math Anal, 2006, 37:1947-1977 [5] Chang T, Hsiao L. The Riemann Problem and Interaction of Waves in Gas Dynamics. NASA STI/Recon Technical Report A, 1989 [6] Chen G Q, Deng X M, Xiang W. Shock diffraction by convex cornered wedges for the nonlinear wave system. Arch Ration Mech Anal, 2014, 211:61-112 [7] Chen G Q, Feldman M. Global solutions of shock reflection by large-angle wedges for potential flow. Ann Math, 2010, 171:1067-1182 [8] Chen G Q, Feldman M. The Mathematics of Shock reflection-diffraction and Von Neumann's Conjectures, volume 359. Princeton University Press, 2018 [9] Chen G Q, Feldman M, Hu J C, Xiang W. Loss of regularity of solutions of the Lighthill problem for shock diffraction for potential flow. SIAM J Math Anal, 2020, 52:1096-1114 [10] Chen G Q, Feldman M, Xiang W. Convexity of Self-Similar Transonic Shocks and Free Boundaries for the Euler Equations for Potential Flow. Arch Ration Mech Anal, 2020, 238:47-124 [11] Chen S X. A mixed equation of Tricomi-Keldysh type. J Hyper Differ Equ, 2012, 9:545-553 [12] Chen S X, Qu A F. Two-dimensional Riemann problems for Chaplygin gas. SIAM J Math Anal, 2012, 44:2146-2178 [13] Chen S X, Qu A F. Piston Problems of Two-Dimensional Chaplygin Gas. Chinese Annals of Mathematics, 2019, 40B:843-868 [14] Cheng H J, Yang H C. Riemann problem for the isentropic relativistic Chaplygin Euler equations. Z Angew Math Phys, 2012, 63:429-440 [15] Dafermos C. Hyperbolic Conservation Laws in Continuum Physics. Springer, 2000, 325 [16] Elling V, Liu T P. Supersonic flow onto a solid wedge. Comm Pure Appl Math, 2008, 61:1347-1448 [17] Glimm J. Solutions in the large for nonlinear hyperbolic systems of equations. Comm Pure Appl Math, 1965, 18:697-715 [18] Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. Springer, 2015 [19] Hunter J K. Transverse diffraction of nonlinear waves and singular rays. SIAM J Appl Math, 1988, 48:1-37 [20] Keldysh M. On some cases of degenerate elliptic equations on the boundary of a domain. Doklady Acad Nauk USSR, 1951, 77:181-183 [21] Keller J B, Blank A. Diffraction and reflection of pulses by wedges and corners. Comm Pure Appl Math, 1951, 4:75-94 [22] Kim E H. A global subsonic solution to an interacting transonic shock for the self-similar nonlinear wave equation. J Differ Equ, 2010, 248:2906-2930 [23] Kim E H. An interaction of a rarefaction wave and a transonic shock for the self-similar two-dimensional nonlinear wave system. Comm Part Differ Equ, 2012, 37:610-646 [24] Kohn J J, Nirenberg L. Degenerate elliptic-parabolic equations of second order. Comm Pure Appl Math, 1967, 20:797-872 [25] Morawetz C S. Potential theory for regular and mach reflection of a shock at a wedge. Comm Pure Appl Math, 1994, 47:593-624 [26] Otway T H. The Dirichlet Problem for Elliptic-hyperbolic Equations of Keldysh Type. Springer, 2012 [27] Prandtl L. Allgemeine Uberlegungen über die Strömung zusammendrückbarer Flüssigkeiten. Z Angew Math Me, 1936, 16:129-142 [28] Serre D. Multidimensional shock interaction for a Chaplygin gas. Arch Ration Mech Anal, 2009, 191:539-577 [29] Song K, Zheng Y X. Semi-hyperbolic patches of solutions of the pressure gradient system. Discrete Contin Dyn Syst, 2009, 24:1365-1380 [30] Wang Q, Zheng Y X. The regularity of semi-hyperbolic patches at sonic lines for the pressure gradient equation in gas dynamics. Indiana Univ Math J, 2014, 63:385-402 [31] Wang Q, Zhang J Q, Yang H C. Two dimensional Riemann-type problem and shock diffraction for the Chaplygin gas. Appl Math Lett, 2019:106046 [32] Yang H C, Zhang M M, Wang Q. Global solutions of shock reflection problem for the pressure gradient system. Comm Pure Appl Anal, 2020, 19:3387-3428 [33] Zheng Y X. Existence of solutions to the transonic pressure-gradient equations of the compressible Euler equations in elliptic regions. Comm Part Differ Equ, 1997, 22:1849-1868 [34] Zheng Y X. A global solution to a two-dimensional Riemann problem involving shocks as free boundaries. Acta Mathematicae Applicatae Sinica, English Series, 2003, 19:559-572 [35] Zheng Y X. Two-dimensional regular shock reflection for the pressure gradient system of conservation laws. Acta Mathematicae Applicatae Sinica, English Series, 2006, 22:177-210 |
[1] | Jianfeng ZHOU, Zhong TAN. REGULARITY OF WEAK SOLUTIONS TO A CLASS OF NONLINEAR PROBLEM [J]. Acta mathematica scientia,Series B, 2021, 41(4): 1333-1365. |
[2] | MINHAJUL, T RAJA SEKHAR. NONLINEAR WAVE INTERACTIONS IN A MACROSCOPIC PRODUCTION MODEL [J]. Acta mathematica scientia,Series B, 2021, 41(3): 764-780. |
[3] | Tingting CHEN, Aifang QU, Zhen WANG. EXISTENCE AND UNIQUENESS OF THE GLOBAL L1 SOLUTION OF THE EULER EQUATIONS FOR CHAPLYGIN GAS [J]. Acta mathematica scientia,Series B, 2021, 41(3): 941-958. |
[4] | Abdelkrim MOUSSAOUI, Jean VELIN. EXISTENCE AND BOUNDEDNESS OF SOLUTIONS FOR SYSTEMS OF QUASILINEAR ELLIPTIC EQUATIONS [J]. Acta mathematica scientia,Series B, 2021, 41(2): 397-412. |
[5] | Xinyu TU, Chunlai MU, Shuyan QIU. CONTINUOUS DEPENDENCE ON DATA UNDER THE LIPSCHITZ METRIC FOR THE ROTATION-CAMASSA-HOLM EQUATION [J]. Acta mathematica scientia,Series B, 2021, 41(1): 1-18. |
[6] | Siran LI. ON VORTEX ALIGNMENT AND THE BOUNDEDNESS OF THE Lq-NORM OF VORTICITY IN INCOMPRESSIBLE VISCOUS FLUIDS [J]. Acta mathematica scientia,Series B, 2020, 40(6): 1700-1708. |
[7] | Xuan Truong LE, Thanh Nhan NGUYEN, Ngoc Trong NGUYEN. ON BOUNDEDNESS PROPERTY OF SINGULAR INTEGRAL OPERATORS ASSOCIATED TO A SCHRÖDINGER OPERATOR IN A GENERALIZED MORREY SPACE AND APPLICATIONS [J]. Acta mathematica scientia,Series B, 2020, 40(5): 1171-1184. |
[8] | Yichen DAI, Zhong TAN. PARTIAL REGULARITY FOR STATIONARY NAVIER-STOKES SYSTEMS BY THE METHOD OF A-HARMONIC APPROXIMATION [J]. Acta mathematica scientia,Series B, 2020, 40(3): 835-854. |
[9] | Léo GLANGETAS, Haoguang LI. SHUBIN REGULARITY FOR THE RADIALLY SYMMETRIC SPATIALLY HOMOGENEOUS BOLTZMANN EQUATION WITH DEBYE-YUKAWA POTENTIAL [J]. Acta mathematica scientia,Series B, 2019, 39(6): 1487-1507. |
[10] | Ting ZHANG, Wancheng SHENG. GLOBAL SOLUTIONS OF THE PERTURBED RIEMANN PROBLEM FOR THE CHROMATOGRAPHY EQUATIONS [J]. Acta mathematica scientia,Series B, 2019, 39(1): 57-82. |
[11] | Zejun WANG, Qi ZHANG. FINITE TIME EMERGENCE OF A SHOCK WAVE FOR SCALAR CONSERVATION LAWS VIA [J]. Acta mathematica scientia,Series B, 2019, 39(1): 83-93. |
[12] | Lianhua HE, Zhong TAN. PARTIAL REGULARITY OF STATIONARY NAVIER-STOKES SYSTEMS UNDER NATURAL GROWTH CONDITION [J]. Acta mathematica scientia,Series B, 2019, 39(1): 94-110. |
[13] | Feimin HUANG, Yong WANG. MACROSCOPIC REGULARITY FOR THE BOLTZMANN EQUATION [J]. Acta Mathematica Scientia, 2018, 38(5): 1549-1566. |
[14] | Jianjun HUANG, Zhenglu JIANG. AVERAGE REGULARITY OF THE SOLUTION TO AN EQUATION WITH THE RELATIVISTIC-FREE TRANSPORT OPERATOR [J]. Acta mathematica scientia,Series B, 2017, 37(5): 1281-1294. |
[15] | Feng CHENG, Wei-Xi LI, Chao-Jiang XU. GEVREY REGULARITY WITH WEIGHT FOR INCOMPRESSIBLE EULER EQUATION IN THE HALF PLANE [J]. Acta mathematica scientia,Series B, 2017, 37(4): 1115-1132. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 5
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 43
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|