[1] Cheng L, Zhou Y. On perturbed metric-preserved mappings and their stability characterizations. J Funct Anal, 2014, 266: 4995-5015 [2] Cheng L, Dong Y. Corrigendum to ``A universal theorem for stability of $\varepsilon$-isometries of Banach spaces" [J Funct Anal, 2015, 269: 199-214]. J Funct Anal, 2020, 279(1): 108518 [3] Cheng L, Dong Y. A note on stability of non-surjective $\varepsilon$-isometries of Banach spaces. Proc Amer Math Soc, 2020, 148: 4837-4844 [4] Chevalier G. Wigner's theorem and its generalizations//Engesser K, Gabbay D, Lehmann D. Handbook of Quantum Logic and Quantum Structures. Amsterdan: Elsevier, 2007: 429-475 [5] Dai D, Dong Y. On stability of Banach spaces via nonlinear $\varepsilon$-isometries. J Math Anal Appl, 2014, 414: 996-1005 [6] Geheér G P.An elementary proof for the non-bijective version of Wigner's theorem. Phys Lett A, 2014, 378: 2054-2057 [7] Godefroy G, Kalton N J. Lipschitz-free Banach spaces. Studia Math, 2003, 159: 121-141 [8] Huang X, Tan D. Wigner's theorem in atomic $L_p$-spaces ($p > 0$). Publ Math (Debr), 2018, 92: 411-418 [9] Huang X, Tan D. Phase-isometries on real normed spaces. J Math Anal Appl, 2020, 488: 124058 [10] Hyers D H, Ulam S M. On approximate isometries. Bull Amer Math Soc, 1945, 51: 288-292 [11] Ilišević D, Omladič M, Turnšek A. Phase-isometries between normed spaces. Linear Alg Appl, 2021, 612: 99-111 [12] Ilišević D, Turnšek A. On Wigner's theorem in strictly convex normed spaces. Publ Math (Debr), 2020, 97: 393-401 [13] James R C. Base and reflexivity of Banach spaces. Ann Math, 1950, 52(2): 518-527 [14] James R C. A non-reflexive Banach space isometric with its second conjugate space. Proc Natl Acad Sci USA, 1951, 37: 174-177 [15] Jia W, Tan D. Wigner's theorem in $\mathcal{L}^{\infty}(\Gamma)$-type spaces. Bull Aust Math Soc, 2018, 97: 279-284 [16] Li Y, Tan D. Wigner's theorem on the Tsirelson space T. Ann Funct Anal, 2019, 10: 515-524 [17] Lomont J S, Mendelson P. The Wigner unitarity-antiunitarity theorem. Ann Math, 1963, 78(2): 548-559 [18] Maksa G, Páles Z. Wigner's theorem revisited. Publ Math (Debr), 2012, 81: 243-249 [19] Omladič M, Šemrl P. On non linear perturbations of isometries. Math Ann, 1995, 303: 617-628 [20] Phelps R R. Convex Functions, Monotone Operators and Differentiability. Berlin: Springer, 1989 [21] Sun L, Sun Y, Dai D.On phase-isometries between the positive cones of $c_0$. Indian J Pure Appl Math, 2023. DOI:10.1007/s13226-023-00472-5 [22] Turnšek A. On approximate phase isometries. Ann Funct Anal, 2022, 13: Art 18 [23] Wang R, Bugajewski D. On normed spaces with the Wigner property. Ann Funct Anal, 2020, 11: 523-539 |