Acta mathematica scientia,Series B ›› 2024, Vol. 44 ›› Issue (5): 1639-1695.doi: 10.1007/s10473-024-0502-7
Previous Articles Next Articles
Yu Li1,2,†, Bing Wang1,2
Received:
2023-02-07
Revised:
2024-05-29
Online:
2024-10-25
Published:
2024-10-22
Contact:
†Yu LI, E-mail,: About author:
Bing Wan, E-mail,: topspin@ustc.edu.cn
Supported by:
CLC Number:
Yu Li, Bing Wang. HEAT KERNEL ON RICCI SHRINKERS (II)*[J].Acta mathematica scientia,Series B, 2024, 44(5): 1639-1695.
[1] Andrews B. Gradient and oscillation estimates and their applications in geometric PDE// International Congress of Chinese Mathematicians (ICCM2012), American Mathematical Society, USA, 2012: 3-19 [2] Bamler R H.Entropy and heat kernel bounds on a Ricci flow background. arXiv:2008.07093v3 [3] amler R H. Compactness theory of the space of super Ricci flow. Invent Math, 2023, 233(3): 1121-1277 [4] Bamler R H.Structure theory of non-collapsed limits of Ricci flow. arXiv:2009.03243v2 [5] Bamler R H.On the fundamental group of non-collapsed ancient Ricci flows. arXiv:2110.02254 [6] Bamler R H, Zhang Q S. Heat kernel and curvature bounds in Ricci flows with bounded scalar curvature. Adv Math, 2017, 319: 396-450 [7] Brendle S. Two-point functions and their applications in geometry. Bull Amer Math Soc, 2014, 51(4): 581-596 [8] Cao H D, Chen B L, Zhu X P.Recent developments on Hamilton's Ricci flow// Surveys in Differential Geometry, Vol. 12. Somerville, MA: International Press, 2008: 47-112 [9] Cao H D, Zhou D. On complete gradient shrinking Ricci solitons. J Differ Geom, 2010, 85(2): 175-186 [10] Chan P, Ma Z, Zhang Y.Ancient Ricci flows with asymptotic solitons. arXiv: 2106.06904v1 [11] Cheeger J, Colding T H. On the structure of space with Ricci curvature bounded below I. J Differ Geom, 1997, 46: 406-480 [12] Cheeger J, Naber A. Lower bounds on Ricci curvature and quantitative behavior of singular sets. Invent Math, 2013, 191(2): 321-339 [13] Cheeger J, Naber A. Regularity of Einstein manifolds and the codimension 4 conjecture. Ann Math, 2015, 182(3): 1093-1165 [14] Chen B L. Strong uniqueness of the Ricci flow. J Differ Geom, 2009, 82(2): 363-382 [15] Chen X, Wang B. Space of Ricci flows (I). Comm Pure Appl Math, 2012, 65(10): 1399-1457 [16] Chen X, Wang B. Space of Ricci flows (II)--Part B: Weak compactness of the flows. J Differential Geom, 2020, 116(1): 1-123 [17] Chen X, Wang B. Remarks of weak-compactness along Kähler Ricci flow// Proceedings of the Seventh International Congress of Chinese Mathematicians, ALM 44, 2016: 203-233 [18] Chen C W, Zhang Z. On shrinking gradient Ricci solitons with positive Ricci curvature and small Weyl tensor. Acta Math Sci, 2019, 39B(5): 1235-1239 [19] Chow B, Chu S C, Glickenstein D, et al.The Ricci Flow: Techniques and Applications. Part II. Analytic Aspects. Mathematical Surveys and Monographs, vol 135. Providence RI: American Mathematical Society, 2008 [20] Enders J, Müller R, Topping P. On Type-I singularities in Ricci flow. Comm Anal Geom, 2011, 19(5): 905-922 [21] Friedman A.Partial Differential Equations of Parabolic Type. Mineola, NY: Courier Dover Publications, 2008 [22] Hamilton R S.The formation of singularities in the Ricci flow// Surveys in Differential Geom. Somerville, MA: International Press, 1995: 7-136 [23] Haslhofer R, Müller R. A compactness theorem for complete Ricci shrinkers. Geom Funct Anal, 2011, 21: 1091-1116 [24] Hein H J, Naber A. New logarithmic Sobolev inequalities and an $\epsilon $-regularity theorem for the Ricci flow. Comm Pure Appl Math, 2014, 67(9): 1543-1561 [25] Li H, Li Y, Wang B. On the structure of Ricci shrinkers. J Funct Anal, 2021, 280(9): 108955 [26] Li X, Ni L. Kähler-Ricci shrinkers and ancient solutions with nonnegative orthogonal bisectional curvature. Math Pures Appl, 2020, 138: 28-45 [27] Li X, Ni L, Wang K. Four-dimensional gradient shrinking solitons with positive isotropic curvature. Int Math Res Not, 2018, 2018(3): 949-959 [28] Li Y, Wang B. The rigidity of Ricci shrinkers of dimension four. Trans Amer Math Soc, 2019, 371(10): 6949-6972 [29] Li Y, Wang B. Heat kernel on Ricci shrinkers. Calc Var Partial Differ Equ, 2020, 59: Art 194 [30] Munteanu O, Wang J. Positively curved shrinking Ricci solitons are compact. J Differ Geom, 2017, 106(3): 499-505 [31] Ma Z, Zhang Y. Perelman's entropy on ancient Ricci flows. J Funct Anal2021, 281(9): Art 109195 [32] Naber A. Noncompact shrinking four solitons with nonnegative curvature. J Reine Angew Math, 2010, 645: 125-153 [33] Naff K.Shrinking Ricci solitons with positive isotropic curvature. arXiv: 1905.10305 [34] Ni L, Wallach N. On a classification of gradient shrinking solitons. Math Res Lett, 2008, 15(5): 941-955 [35] Perelman G.The entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159 [36] Villani C. Optimal Transport, Old and New. Grundlehren Math Wiss, vol 338. Berlin: Springer, 2008 |
[1] | Yiting WU. BLOW-UP CONDITIONS FOR A SEMILINEAR PARABOLIC SYSTEM ON LOCALLY FINITE GRAPHS [J]. Acta mathematica scientia,Series B, 2024, 44(2): 609-631. |
[2] | Jin GAO. THE DAVIES METHOD FOR HEAT KERNEL UPPER BOUNDS OF NON-LOCAL DIRICHLET FORMS ON ULTRA-METRIC SPACES [J]. Acta mathematica scientia,Series B, 2020, 40(5): 1240-1248. |
[3] | Chengjie YU, Feifei ZHAO. A NOTE ON LI-YAU-TYPE GRADIENT ESTIMATE [J]. Acta mathematica scientia,Series B, 2019, 39(4): 1185-1194. |
[4] | Yashan ZHANG. A NOTE ON CONICAL KÄHLER-RICCI FLOW ON MINIMAL ELLIPTIC KÄHLER SURFACES [J]. Acta mathematica scientia,Series B, 2018, 38(1): 169-176. |
[5] | Meng YANG. HEAT KERNEL ESTIMATES ON JULIA SETS [J]. Acta mathematica scientia,Series B, 2017, 37(5): 1399-1414. |
[6] | HU Er-Yan. LOWER INEQUALITIES OF HEAT SEMIGROUPS BY USING PARABOLIC MAXIMUM PRINCIPLE [J]. Acta mathematica scientia,Series B, 2012, 32(4): 1349-1364. |
[7] | SU Yan-Hui, ZHANG Kun. ON THE KÄ|HLER-RICCI SOLITONS WITH VANISHING BOCHNER-WEYL TENSOR [J]. Acta mathematica scientia,Series B, 2012, 32(3): 1239-1244. |
[8] | LUO Guang-Zhou. IMPROVED GAGLIARDO-NIRENBERG INEQUALITIES ON HEISENBERG TYPE GROUPS [J]. Acta mathematica scientia,Series B, 2011, 31(4): 1583-1590. |
[9] | WANG Yong. EQUIVARIANT HEAT INVARIANTS OF THE LAPLACIAN AND NONMININMAL OPERATORS DIFFERENTIAL FORMS [J]. Acta mathematica scientia,Series B, 2011, 31(3): 805-814. |
[10] | ZHANG Hui-Chun, SHU Xi-Ping. ON A NEW DEFINITION OF RICCI CURVATURE ON ALEXANDROV SPACES [J]. Acta mathematica scientia,Series B, 2010, 30(6): 1949-1974. |
[11] | Luan Jingwen; Zhu Fuliu. THE UNIFORMLY BOUNDEDNESS OF THE RIESZ TRANSFORMS ON THE CAYLEY HEISENBERG GROUPS [J]. Acta mathematica scientia,Series B, 2008, 28(4): 895-914. |
[12] | Zhu Fuliu; Yang Qiaohua. HEAT KERNELS AND HARDY'S UNCERTAINTY PRINCIPLE ON H-TYPE GROUPS [J]. Acta mathematica scientia,Series B, 2008, 28(1): 171-178. |
[13] | LUAN Jing-Wen, SHU Fu-Liu. THE HEAT KERNEL ON THE CAYLEY HEISENBERG GROUP [J]. Acta mathematica scientia,Series B, 2005, 25(4): 687-702. |
[14] | E.M.E.Zayed. INVERSE PROBLEMS FOR A GENERAL MULTI-CONNECTED BOUNDED DRUM WITH APPLICATIONS IN PHYSICS [J]. Acta mathematica scientia,Series B, 2003, 23(1): 104-116. |
[15] | Zhu Fuliu. ON THE HEAT KERNEL OF THE RIEMANNIAN SYMMETRIC SPACE SU*(6)/SP(3) [J]. Acta mathematica scientia,Series B, 1995, 15(3): 310-325. |
|