[1] Alves C O, Ding Y H. Multiplicity of positive solutions to a $p$-Laplacian equation involving critical nonlinearity. J Math Anal Appl, 2003, 279: 508-521 [2] Alves C O, Figueiredo G M. Multiple solutions for a semilinear elliptic equation with critical growth and magnetic field. Milan J Math, 2014, 82: 389-405 [3] Alves C O, Figueiredo G M, Furtado M F. Multiple solutions for a nonlinear Schrödinger equation with magnetic fields. Communications in Partial Differential Equations, 2011, 36: 1565-1586 [4] Arioli G, Szulkin A. A Semilinear Schrödinger equation in the presence of a magnetic field. Arch Rational Mech Anal, 2003, 170: 277-295 [5] Bahri A, Coron J M. On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain. Comm Pure Appl Math, 1988, 41: 253-294 [6] Bartsch T, Wang Z Q. Multiple positive solutions for a nonlinear Schrödinger equation. Z Angew Math Phys, 2000, 51: 366-384 [7] Benci V, Cerami G. Positive solutions of some nonlinear elliptic problems in exterior domains. Arch Rational Mech Anal, 1987, 99: 283-300 [8] Benci V, Cerami G. The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems. Arch Rational Mech Anal, 1991, 114: 79-93 [9] Bueno H, Mamami G G, Pereira G A. Ground state of a magnetic nonlinear Choquard equation. Nonlinear Anal, 2019, 181: 189-199 [10] Chabrowski J, Yang J F. Multiple semiclassical solutions of the Schrödinger equation involving a critical Sobolev exponent. Port Math, 2000, 57: 273-284 [11] Cingolani S, Lazzo M. Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations. Topol Methods Nonlinear Anal, 1997, 10: 1-13 [12] Clapp M, Ding Y H, Positive solutions for a nonlinear Schrödinger equation with critical nonlinearity. Z Angew Math Phys, 2004, 55: 592-605 [13] Cingolani S, Clapp M, Secchi S. Multiple solutions to a magnetic nonlinear Choquard equation. Z Angew Math Phys, 2012, 63: 233-248 [14] Cingolani S, Secchi S, Squassina M. Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities. Proc Roy Soc Edinburgh A, 2010, 140: 973-1009 [15] Coron J M. Topologie et cas limite des injections de Sobolev. C R Acad Sci Paris, Séries I, 1984, 299: 209-212 [16] Del Pino M, Felmer P. Local Mountain Pass for semi-linear elliptic problems in unbounded domains. Calc Var Partial Differ Equ, 1996, 4: 121-137 [17] Esteban M, Lions P L.Stationary solutions of nonlinear Schrödinger equations with an external magnetic field//Colomini F, et al. PDE and Calculus of Variations. Boston: Birkhäuser, 1989: 401-449 [18] Floer A, Weinstein A, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J Funct Anal, 1986, 69: 397-408 [19] Gao F S, Yang M B. On the Brezis-Nirenberg type critical problem for nonlinear Choquard equation. Sci China Math, 2018, 61: 1219-1242 [20] Gao F S, Yang M B. On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents. J Math Anal Appl, 2017, 448: 1006-1041 [21] Ghimenti M, Pagliardini D. Multiple positive solutions for a slightly subcritical Choquard problem on bounded domains. Calc Var Partial Differ Equ, 2019, 58: 1-21 [22] Goel D. The effect of topology on the number of positive solutions of elliptic equation involving Hardy-Littlewood-Sobolev critical exponent. Top Methods in Nonlinear Anal, 2019, 54: 751-771 [23] Guo L, Hu T X, Peng S J, et al. Existence and uniqueness of solutions for Choquard equation involving Hardy-Littlewood-Sobolev critical exponent. Calc Var Partial Differential Equations, 2019, 58: Art 128 [24] Ji C, Rădulescu V D. Multi-bump solutions for the nonlinear magnetic Choquard equation with deepening potential well. J Differential Equations, 2022, 306: 251-279 [25] Lieb E H. Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Studies in Appl Math, 1976/77, 57: 93-105 [26] Lieb E H, Loss M. Analysis. Providence, RI: Amer Math Soc, 1997 [27] Lions P L. The Choquard equation and related questions. Nonlinear Anal, 1980, 4: 1063-1072 [28] Liu F Q, Yang J F, Yu X H. Positive solutions to multi-critical elliptic problems. Ann di Mate Pura ed Appl, 2023, 202: 851-875 [29] Lü D F. Existence and concentration behavior of ground state solutions for magnetic nonlinear Choquard equations. Commun Pure Appl Anal, 2016, 15: 1781-1795 [30] Moroz V, Schaftingen J Van. Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J Funct Anal, 2013, 265: 153-184 [31] Moroz V, Schaftingen J Van. Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent. Comm Contem Math, 2015, 17: 1550005 [32] Mukherjee T, Sreenadh K.On concentration of least energy solutions for magnetic critical Choquard equations. J Math Anal Appl, 2018, 464: 402-420 [33] Ma P, Zhang J H.Existence and multiplicity of solutions for fractional Choquard equations. Nonlinear Analysis, 2017, 164: 100-117 [34] Salazar D. Vortex-type solutions to a magnetic nonlinear Choquard equation. Z Angew Math Phys, 2015, 66: 663-675 [35] Tang Z W, Wang Y L. Least energy solutions for semilinear Schrödinger equation with electromagnetic fields and critical growth. Science China Mathematics, 2015, 58: 2317-2328 [36] Wang X F, Zeng B, On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions. SIAM J Math Anal, 1997, 28: 633-655 [37] Willem M. Minimax Theorems. Boston: Birkhäuser, 1996 [38] Wen R J, Yang J F, Yu X H. Multiple solutions for critical nonlocal elliptic problems with magnetic field. Discrete Contin Dyn Syst Ser S, 2024, 17(2): 530-546 [39] Xu Z Y, Yang J F. Multiple solutions to multi-critical Schrödinger equations. Advanced Nonlinear Studies, 2022, 22: 273-288 [40] Yang M B, Wei Y H. Existence and multiplicity of solutions for nonlinear Schrödinger equations with magnetic field and Hartree type nonlinearities. J Math Anal Appl, 2013, 403: 680-694 |