数学物理学报(英文版) ›› 2024, Vol. 44 ›› Issue (4): 1373-1393.doi: 10.1007/s10473-024-0411-9

• • 上一篇    下一篇

MULTIPLE SOLUTIONS TO CRITICAL MAGNETIC SCHRÖDINGER EQUATIONS

Ruijiang Wen, Jianfu Yang*   

  1. School of Mathematics and Statistics, Jiangxi Normal University, Nanchang 330022, China
  • 收稿日期:2023-03-02 修回日期:2023-08-08 出版日期:2024-08-25 发布日期:2024-08-30

MULTIPLE SOLUTIONS TO CRITICAL MAGNETIC SCHRÖDINGER EQUATIONS

Ruijiang Wen, Jianfu Yang*   

  1. School of Mathematics and Statistics, Jiangxi Normal University, Nanchang 330022, China
  • Received:2023-03-02 Revised:2023-08-08 Online:2024-08-25 Published:2024-08-30
  • Contact: *E-mail:jfyang200749@sina.com
  • About author:E-mail: jfyang200749@sina.com
  • Supported by:
    J. Yang's research was supported by the National Natural Science Foundation of China (12171212).

摘要:

In this paper, we are concerned with the existence of multiple solutions to the critical magnetic Schrödinger equation

$\begin{equation}\label{eq:0.1}(-{\rm i}\nabla-A(x))^2u+\lambda V(x)u=\mu |u|^{p-2}u+\Big(\int_{\mathbb{R^N}}\frac{|u(y)|^{2^*_\alpha}}{|x-y|^\alpha}{\rm d}y\Big)|u|^{2^*_\alpha-2}u\quad {\rm in}\ \mathbb{R}^N,\end{equation}$  (0.1)

where $N\geq4$, $2\leq p<2^*$, $2^*_\alpha=\frac{2N-\alpha}{N-2}$ with $0<\alpha<4$, $\lambda>0$, $\mu\in\mathbb{R}$, $A(x)= (A_1(x), A_2(x),\cdots , A_N(x))$ is a real local Hölder continuous vector function, $i$ is the imaginary unit, and $V(x)$ is a real valued potential function on $\mathbb{R}^N$.Supposing that $\Omega={\rm int}\,V^{-1}(0)\subset\mathbb{R}^N$ is bounded, we show that problem (0.1) possesses at least cat$_\Omega(\Omega)$ nontrivial solutions if $\lambda$ is large.

关键词: critical magnetic Schr?dinger equation;, multiple solutions, Ljusternik-Schnir- elman theory

Abstract:

In this paper, we are concerned with the existence of multiple solutions to the critical magnetic Schrödinger equation

$\begin{matrix}(-{\rm i}\nabla-A(x))^2u+\lambda V(x)u=\mu |u|^{p-2}u+\Big(\int_{\mathbb{R^N}}\frac{|u(y)|^{2^*_\alpha}}{|x-y|^\alpha}{\rm d}y\Big)|u|^{2^*_\alpha-2}u\quad {\rm in}\ \mathbb{R}^N,\end{matrix}$ (0.1)

where $N\geq4$, $2\leq p<2^*$, $2^*_\alpha=\frac{2N-\alpha}{N-2}$ with $0<\alpha<4$, $\lambda>0$, $\mu\in\mathbb{R}$, $A(x)= (A_1(x), A_2(x),\cdots , A_N(x))$ is a real local Hölder continuous vector function, $i$ is the imaginary unit, and $V(x)$ is a real valued potential function on $\mathbb{R}^N$.Supposing that $\Omega={\rm int}\,V^{-1}(0)\subset\mathbb{R}^N$ is bounded, we show that problem (0.1) possesses at least cat$_\Omega(\Omega)$ nontrivial solutions if $\lambda$ is large.

中图分类号: 

  • 35A15