[1] Azzollini A, Pomponio A. Ground state solutions for the nonlinear Schrödinger-Maxwell equations. J Math Anal Appl, 2008, 345:90-108 [2] Bokanowski O, López J L, Soler J. On an exchange interaction model for quantum transport:the Schrödinger-Poisson-Slater system. Math Models Methods Appl Sci, 2003, 13:1397-1412 [3] Bokanowski O, Mauser N J. Local approximation for the Hartree-Fock exchange potential:a deformation approach. Math Models Methods Appl Sci, 1999, 9:941-961 [4] D'Aprile T, Mugnai D. Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations. Proc Roy Soc Edinburgh Sect A, 2004, 134:893-906 [5] Ekeland I. On the variational principle. J Math Anal Appl, 1974, 47:324-353 [6] Jiang Y S, Wang Z P, Zhou H S. Positive solutions for Schrödinger-Poisson-Slater system with coercive potential. Topological Methods in Nonlinear Analysis, 2020, accepted for publication [7] Jiang Y, Zhou H S. Bound states for a stationary nonlinear Schrödinger-Poisson system with sign-changing potential in R3. Acta Mathematica Scientia, 2009, 29B(4):1095-1104 [8] Jiang Y, Zhou H S. Schrödinger-Poisson system with steep potential well. J Differential Equations, 2011, 251:582-608 [9] Jiang Y, Zhou H S. Multiple solutions for a Schrödinger-Poisson-Slater equation with external Coulomb potential. Science China Mathematics, 2014, 57(6):1163-1174 [10] Kikuchi H. On the existence of a solution for elliptic system related to the Maxwell-Schrödinger equations. Nonlinear Anal, 2007, 67:1445-1456 [11] Kikuchi H. Existence and stability of standing waves for Schrödinger-Poisson-Slater equation. Advanced Nonlinear Studies, 2007, 7(3):403-437 [12] Li X G, Zhang J, Wu Y H. Strong instability of standing waves for the Schrodinger-Poisson-Slater equation (in Chinese). Sci Sin Mat, 2016, 46(1):45-58 [13] Lions P L. Some remarks on Hartree equation. Nonlinear Anal, 1981, 5:1245-1256 [14] Lions P L. Solutions of Hartree-Fock equations for Coulomb systems. Comm Math Phys, 1987, 109:33-97 [15] Mauser N J. The Schrödinger-Poisson-Xα equation. Appl Math Lett, 2001, 14:759-763 [16] Rabinowitz P H. Minimax methods in critical point theory with applications to differential equations. CBMS Regional Conference Series in Mathematics. Vol 65. Providence:American Mathematical Society, 1986 [17] Ruiz D. The Schrödinger-Poisson equation under the effect of a nonlinear local term. J Funct Anal, 2006, 237:655-674 [18] Ruiz D, Lions P, On the Schrödinger-Poisson-Slater system:Behavior of minimizers, radial and nonradial cases. Arch Rational Mech Anal, 2010, 198:349-368 [19] Slater J C. A simplification of the Hartree-Fock method. Phys Rev, 1951, 81:385-390 [20] Wang Z P, Zhou H S. Positive solution for a nonlinear stationary Schrödinger-Poisson system in R3. Discrete Contin Dyn Syst, 2007, 18(4):809-816 [21] Zeng X Y, Zhang L. Normalized soutions for Schrödinger-Poisson-Slater equations with unbounded potentials. J Math Anal Appl, 2017, 452(1):47-61 [22] Zhao L G, Zhao F K. On the existence of solutions for the Schrödinger-Poisson equations. J Math Anal Appl, 2008, 346:155-169 |