[1] Alazard T. Incompressible limit of the non-isentropic Euler equations with solid wall boundary conditions. Adv Differ Equ, 2005, 10: 19-44 [2] Asano K. On the incompressible limit of the compressible Euler equation. Japan J Appl Math, 1987, 4: 455-488 [3] Chen S. On the initial-boundary value problems for quasilinear symmetric hyperbolic system with characteristic boundary. Chinese Ann Math, 1982, 3: 223-232 [4] Cheng B, Ju Q, Schochet S. Convergence rate estimates for the low Mach and Alfvén number three-scale singular limit of compressible ideal magnetohydrodynamics. ESAIM: Math Modell Numer Anal, 2021, 55: S733-S759 [5] Chorin A J, Marsden J E, Marsden J E.A Mathematical Introduction to Fluid Mechanics. New York: Springer, 1990 [6] Feireisl E, Novotn? A. Singular Limits in Thermodynamics of Viscous Fluids. Basel: Birkhäuser, 2009 [7] Gerbeau J F, Le Bris C, Lelièvre T.Mathematical Methods for the Magnetohydrodynamics of Liquid Metals. Oxford: Clarendon Press, 2006 [8] Grenier E. Oscillatory perturbations of the Navier-Stokes equations. J Math Pure Appl, 1997, 76: 477-498 [9] Hu X, Wang D. Low mach number limit of viscous compressible magnetohydrodynamic flows. SIAM J Math Anal, 2009, 41: 1272-1294 [10] Iguchi T. The incompressible limit and the initial layer of the compressible Euler equation in $\mathbb{R}^n_+$. Math Methods Appl Sci, 1997, 20: 945-958 [11] Isozaki H. Singular limits for the compressible Euler equation in an exterior domain. J Reine Angew Math, 1987, 381: 1-36 [12] Jiang S, Ju Q, Li F. Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions. Commun Math Phys, 2010, 297: 371-400 [13] Jiang S, Ju Q, Li F. Incompressible limit of the nonisentropic ideal magnetohydrodynamic equations. SIAM J Math Anal, 2016, 48: 302-319 [14] Jiang S, Ju Q, Xu X. Small Alfvén number limit for incompressible magneto-hydrodynamics in a domain with boundaries. Science China Mathematics, 2019, 62: 2229-2248 [15] Ju Q, Schochet S, Xu X. Singular limits of the equations of compressible ideal magneto-hydrodynamics in a domain with boundaries. Asymptotic Anal, 2019, 113: 137-165 [16] Ju Q, Wang J, Xu X. Low Mach number limit of inviscid Hookean elastodynamics. Nonlinear Anal: Real World Appl, 2022, 68: 103683 [17] Kawashima S, Yanagisawa T, Shizuta Y. Mixed problems for quasi-linear symmetric hyperbolic systems. Proc Japan Acad Ser A Math Sci, 1987, 63: 243-246 [18] Klainerman S, Majda A. Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun Pure Appl Math, 1981, 34: 481-524 [19] Klainerman S, Majda A. Compressible and incompressible fluids. Commun Pure Appl Math, 1982, 35: 629-651 [20] Kukučka P. Singular limits of the equations of magnetohydrodynamics. J Math Fluid Mech, 2011, 13: 173-189 [21] Kwon Y S, Trivisa K.On the incompressible limits for the full magnetohydrodynamics flows. J Differ Equations, 2011, 251: 1990-2023 [22] Lax P D, Phillips R S. Local boundary conditions for dissipative symmetric linear differential operators. Commun Pure Appl Math, 1960, 13: 427-455 [23] Li F, Zhang S. Low mach number limit of the non-isentropic ideal magnetohydrodynamic equations. J Math Fluid Mech, 2021, 23: 1-15 [24] Lions P L, Masmoudi N. Incompressible limit for a viscous compressible fluid. J Math Pure Appl, 1998, 77: 585-627 [25] Majda A.Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. New York: Springer-Verlag, 1984 [26] Majda A, Osher S. Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary. Commun Pure Appl Math, 1975, 28: 607-675 [27] Ohkubo T. Well posedness for quasi-linear hyperbolic mixed problems with characteristic boundary. Hokkaido Math J, 1989, 18: 79-123 [28] Ohno M, Shirota T. On the initial-boundary-value problem for the linearized equations of magnetohydrodynamics. Arch Ration Mech Anal, 1998, 144: 259-299 [29] Schochet S. The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit. Commun Math Phys, 1986, 104: 49-75 [30] Schochet S. Singular limits in bounded domains for quasilinear symmetric hyperbolic systems having a vorticity equation. J Differ Equations, 1987, 68: 400-428 [31] Secchi P. Well-posedness for a mixed problem for the equations of ideal magneto-hydrodynamics. Arch Math (Basel), 1995, 64: 237-245 [32] Secchi P. Well-posedness of characteristic symmetric hyperbolic systems. Arch Ration Mech Anal, 1996, 134: 155-197 [33] Secchi P. On the incompressible limit of inviscid compressible fluids. J Math Fluid Mech, 2000, 25: 107-125 [34] Secchi P. An initial boundary value problem in ideal magneto-hydrodynamics. Nonlinear Differential Equations and Applications, 2002, 9: 441-458 [35] Takayama M. Initial boundary value problem for the equations of ideal magneto-hydrodynamics in a half space (mathematical analysis in fluid and gas dynamics). Kyoto: Research Institute for Mathematical Sciences, 2003, 1322: 79-84 [36] Ukai S. The incompressible limit and the initial layer of the compressible Euler equation. J Math Kyoto U, 1986, 26: 323-331 [37] Yanagisawa T. The initial boundary value problem for the equations of ideal magneto-hydrodynamics. Hokkaido Math J, 1987, 16: 295-314 [38] Yanagisawa T, Matsumura A. The fixed boundary value problems for the equations of ideal magneto-hydrodynamics with a perfectly conducting wall condition. Commun Math Phys, 1991, 136: 119-140 |