[1] Agmon S, Douglis A, Nirenberg L. Estimates near the boundary for thr solutions of elliptic partial differential equations satisfying general boundary conditions, II. Comm Pure Appl Math, 1964, 17:35-92 [2] Beirão da Veiga H, Crispo F. Concerning the Wk,p-inviscid limit for 3-D flows under a slip boundary condition. J Math Fluid Mech, 2011, 13(1):117-135 [3] Beirão da Veiga H. Vorticity and regularity for flows under the Navier boundary condition. Commun Pure Appl Anal, 2006, 5(4):907-918 [4] Beirão da Veiga H, Crispo F. Sharp inviscid limit results under Navier type boundary conditions. An Lp theory. J Math Fluid Mech, 2010, 12(3):397-411 [5] Berselli L C, Spirito S. On the vanishing viscosity limit of 3D Navier-Stokes equations under slip boundary conditions in general domains. Comm Math Phys, 2012, 316(1):171-198 [6] Biskamp D. Nonlinear Magnetohydrodynamics. Cambridge Monographs on Plasma Physics, 1. Cambridge:Cambridge University Press, 1993 [7] Chemin J Y. Perfect Incompressible Fluids. Oxford Lecture Series in Mathematics and its Applications, Vol 14. New York:The Clarendon Press, Oxford University Press, 1998 [8] Cho Y G, Choe H J, Kim H. Unique solvability of the initial boundary value problems for the compressible viscous fluids. J Math Pures Appl, 2004, 83(2):243-275 [9] Davidson P A. An Introduction to Magnetohydrodynamics. Cambridge Texts in Applied Mathematics. Cambridge:Cambridge University Press, 2001 [10] Franck B, Pierre F. Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. Applied Mathematical Sciences, 183. New York:Springer, 2013 [11] Gie G M, Kelliher J P. Boundary layer analysis of the Navier-Stokes equations with generalized Navier boundary conditions. J Differential Equations, 2012, 253(6):1862-1892 [12] Gués O. Probléme mixte hyperbolique quasi-linéaire caractéristique. Comm Partial Differential Equations, 1990, 15(5):595-645 [13] Iftimie D, Sueur F. Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions. Arch Ration Mech Anal, 2011, 199(1):145-175 [14] Kato T. Nonstationary flows of viscous and ideal fluids in $\mathbb{R}^3$. J Funct Anal, 1972, 9:296-305 [15] Maekawa Y. On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half plane. Comm Pure Appl Math, 2014, 67:1045-1128 [16] Masmoudi N. Remarks about the inviscid limit of the Navier-Stokes system. Comm Math Phys, 2007, 270(3):777-788 [17] Masmoudi N, Rousset F. Uniform regularity for the Navier-Stokes equation with Navier boundary condition. Arch Ration Mech Anal, 2012, 203(2):529-575 [18] Navier C L M H. Sur les lois de l'équilibre et du mouvement des corps élastiques. Mem Acad R Sci Inst France, 1827, 6:369 [19] Oleinik O A, Samokhin V N. Mathematical Models in Boundary Layer Theory. Applied Mathematics and Mathematical Computation, 15. Boca Raton, FL:Chapman & Hall/CRC, 1999 [20] Paddick M. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete Contin Dyn Syst, 2016, 36(5):2673-2709 [21] Swann H S G. The convergence with vanishing viscosity of nonstationary Navier-Stokes flow to ideal flow in $\mathbb{R}^3$. Trans Amer Math Soc, 1971, 157:373-397 [22] Sammartino M, Caflisch R E. Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Comm Math Phys, 1998, 192:433-461 [23] Sammartino M, Caflisch R E. Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution. Comm Math Phys, 1998, 192:463-491 [24] Secchi P. On the equations of ideal incompressible magnetohydrodynamics. Rend Sem Mat Univ Padova, 1993, 90:103-119 [25] Teman R. Navier-Stokes Equations:Theory and Numerical Analysis. New York, Oxford:North-Holland, 1979 [26] Wang Y, Xin Z P, Yong Y. Uniform regularity and vanishing viscosity limit for the compressible NavierStokes with general Navier-slip boundary conditions in three-dimensional domains. SIAM J Math Anal, 2015, 47(6):4123-4191 [27] Xiao Y L, Xin Z P. On the inviscid limit of the 3D Navier-Stokes equations with generalized Navier-slip boundary conditions. Commun Math Stat, 2013, 1(3):259-279 [28] Xiao Y L, Xin Z P. On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition. Comm Pure Appl Math, 2007, 60(7):1027-1055 [29] Xiao Y L, Xin Z P, Wu J H. Vanishing viscosity limit for the 3D magnetohydrodynamic system with a slip boundary condition. J Funct Anal, 2009, 257(11):3375-3394 [30] Zhang J W. The inviscid and non-resistive limit in the Cauchy problem for 3-D nonhomogeneous incompressible magneto-hydrodynamics. Acta Math Sci, 2011, 31B(3):882-896 [31] Zhang Z P. The combined inviscid and non-resistive limit for the nonhomogeneous incompressible magnetohydrodynamic equations with Navier boundary conditions. Acta Math Sci, 2018, 38B(6):1655-1677 |