[1] Bondarenko O, Liu X D.The factorization method for inverse obstacle scattering with conductive boundary condition. Inverse Probl, 2013, 29(9): 095021 [2] Cakoni F, Colton D, Haddar H.Inverse Scattering Theory and Transmission Eigenvalues. Philadelphia: SIAM, 2016 [3] Colton D, Kress R.Eigenvalues of the far field operator and inverse scattering theory. Society for Industrial and Applied Mathematics, 1995, 26(3): 601-615 [4] Colton D, Kress R.Eigenvalues of the far field operator for the Helmholtz equation in an absorbing medium. SIAM J Appl Math, 1995, 55(6): 1724-1735 [5] Colton D, Kress R.Inverse Acoustic and Electromagnetic Scattering Theory. 4th ed. Switzerland AG: Springer Nature, 2019 [6] Dong H P, Zhang D Y, Guo Y K.A reference ball based iterative algorithm for imaging acoustic obstacle from phaseless far-field data. Inverse Probl Imaging, 2019, 13(1): 177-195 [7] Ivanyshyn O.Shape reconstruction of acoustic obstacles from the modulus of the far field pattern. Inverse Probl Imaging, 2007, 1(4): 609-622 [8] Ivanyshyn O, Kress R.Identification of sound-soft 3D obstacles from phaseless data. Inverse Probl Imaging, 2010, 4(1): 131-149 [9] Ji X, Liu X D.Inverse elastic scattering problems with phaseless far field data. Inverse Probl, 2019, 35(11): 114004 [10] Ji X, Liu X D, Zhang B.Inverse acoustic scattering with phaseless far field data: uniqueness, phase retrieval, and direct sampling methods. SIAM J Imaging Sci, 2019, 12(2): 1163-1189 [11] Ji X, Liu X D, Zhang B.Phaseless inverse source scattering problem: Phase retrieval, uniqueness and direct sampling methods. J Comput Phys X, 2019, 1: 100003 [12] Ji X, Liu X D, Zhang B.Target reconstruction with a reference point scatterer using phaseless far field patterns. SIAM J Imaging Sci, 2019, 12(1): 372-391 [13] Karageorghis A, Johansson B T, Lesnic D.The method of fundamental solutions for the identification of a sound-soft obstacle in inverse acoustic scattering. Appl Numer Math, 2012, 62(12): 1767-1780 [14] Kirsch A, Grinberg N.The Factorization Method for Inverse Problems. Oxford: Oxford University Press, 2008 [15] Kress R, Rundell W.Inverse obstacle scattering with modulus of the far field pattern as data. Inverse Problems in Medical Imaging and Nondestructive Testing, 1997: 75-92 [16] Kwon O, Seo J K.Lipschitz stability estimates for translations and balls in inverse scattering. Inverse Probl, 2000, 16(2): 293-301 [17] Lee K M.Shape reconstructions from phaseless data. Eng Anal Bound Elem, 2016, 71: 174-178 [18] Liu J, Seo J.On stability for a translated obstacle with impedance boundary condition. Nonlinear Anal, 2004, 59(5): 731-744 [19] Liu X D, Zhang B.Unique determination of a sound soft ball by the modulus of a single far field datum. J Math Anal Appl, 2010, 365(2): 619-624 [20] Majda A.High frequency asymptotics for the scattering matrix and the inverse problem of acoustical scattering. Comm Pure Appl Math, 1976, 29(3): 261-291 [21] Shin J.Inverse obstacle backscattering problems with phaseless data. Eur J Appl Math, 2016, 27(1): 111-130 [22] Sun F L, Zhang D Y, Guo Y K.Uniqueness in phaseless inverse scattering problems with superposition of incident point sources. Inverse Probl, 2019, 35(10): 105007 [23] Xiang J L, Yan G Z.Uniqueness of the inverse transmission scattering with conductive boundary condition. Acta Math Sci, 2021, 41B(3): 925-940 [24] Xu X X, Zhang B, Zhang H W.Uniqueness in inverse scattering problems with phaseless far-field data at a fixed frequency. SIAM J Appl Math, 2018, 78(3): 1737-1753 [25] Xu X X, Zhang B, Zhang H W.Uniqueness in inverse scattering problems with phaseless far-field data at a fixed frequency II. SIAM J Appl Math, 2018, 78(6): 3024-3039 [26] Zhang B, Zhang H W.Imaging of locally rough surfaces from intensity-only far-field or near-field data. Inverse Probl, 2017, 33(5): 055001 [27] Zhang B, Zhang H W.Recovering scattering obstacles by multi-frequency phaseless far-field data. J Comput Phys, 2017, 345: 58-73 [28] Zhang B, Zhang H W.Fast imaging of scattering obstacles from phaseless far-field measurements at a fixed frequency. Inverse Probl, 2018, 34(10): 104005 [29] Zhang D Y, Guo Y K.Uniqueness results on phaseless inverse scattering with a reference ball. Inverse Probl, 2018, 34(8): 085002 [30] Zhang D Y, Guo Y K.Some recent developments in the unique determinations in phaseless inverse acoustic scattering theory. Electron Res Arch, 2021, 29(2): 2149-2165 [31] Zhang D Y, Guo Y K, Li J L, Liu H Y.Retrieval of acoustic sources from multi-frequency phaseless data. Inverse Probl, 2018, 34: 094001 [32] Zhang D Y, Guo Y K, Sun F L, Liu H Y.Unique determinations in inverse scattering problems with phaseless near-field measurements. Inverse Probl Imaging, 2020, 14(3): 569-582 [33] Zhang D Y, Wang Y L, Guo Y K, Li J Z.Uniqueness in inverse cavity scattering problem with phaseless near-field data. Inverse Probl, 2020, 36: 025004 |