[1] Yuan H R. On transonic shocks in two-dimensional variable-area ducts for steady Euler system. SIAM J Math. Anal, 2006, 38:1343-1370 [2] Yuan H R. Transonic shocks for steady Euler flows with cylindrical symmetry. Nonlinear Anal, 2007, 66:1853-1878 [3] Chen S X, Yuan H R. Transonic shocks in compressible flow passing a duct for three-dimensional Euler systems. Arch Ration Mech Anal, 2008, 187:523-556 [4] Yuan H R. A remark on determination of transonic shocks in divergent nozzles for steady compressible Euler flows. Nonlinear Anal, Real World Appl, 2008, 9:316-325 [5] Liu L, Yuan H R. Stability of cylindrical transonic shocks for the two-dimensional steady compressible Euler system. J Hyperbolic Differ Equ, 2008, 5:347-379 [6] Chen G Q, Yuan H R. Local uniqueness of steady spherical transonic shock-fronts for the three-dimensional full Euler equations. Commun Pure Appl Anal, 2013, 12:2515-2542 [7] Fang B X, Liu L, Yuan H R. Global uniqueness of transonic shocks in two-dimensional steady compressible Euler flows. Arch Ration Mech Anal, 2013, 207:317-345 [8] Liu L, Xu G, Yuan H R. Stability of spherically symmetric subsonic flows and transonic shocks under multidimensional perturbations. Adv Math, 2016, 291:696-757 [9] Chen G Q, Feldman M. Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type. J Amer Math Soc, 2003, 16:461-494 [10] Xin Z P, Yin H C. Transonic shock in a nozzle I:Two-dimensional case. Comm Pure Appl Math, 2005, 58:999-1050 [11] Bae M, Feldman M. Transonic shocks in multidimensional divergent nozzles. Arch Ration Mech Anal, 2011, 201:777-840 [12] Li J, Xin Z P, Yin H C. Transonic shocks for the full compressible Euler system in a general two-dimensional de Laval nozzle. Arch Ration Mech Anal, 2013, 207:533-581 [13] Chen G Q, Huang F M, Wang T Y, Xiang W. Steady Euler flows with large vorticity and characteristic discontinuities in arbitrary infinitely long nozzles. Adv Math, 2019, 346:946-1008 [14] Huang F M, Kuang J, Wang D H, Xiang W. Stability of supersonic contact discontinuity for two-dimensional steady compressible Euler flows in a finite nozzle. J Differential Equations, 2019, 266:4337-4376 [15] Rathakrishnan E. Applied gas dynamics. John Wiley & Sons (Asia) Pte Ltd, 2010 [16] Van Dyke M. An album of fluid motion. California:The Parabolic Press, 1982 [17] Yuan H R, Zhao Q. Subsonic flow passing a duct for three-dimensional steady compressible Euler system with friction (in Chinese). To appear in Sci Sin Math, 2021, 51:1-23. doi:10.1360/N012019-00103 [18] Liu T P. Transonic gas flow in a duct of varying area. Arch Rational Mech Anal, 1982, 80:1-18 [19] Liu T P. Nonlinear stability and instability of transonic flows through a nozzle. Comm Math Phys, 1982, 83:243-260 [20] Rauch J, Xie C J, Xin Z P. Global stability of steady transonic Euler shocks in quasi-one-dimensional nozzles. J Math Pures Appl, 2013, 99:395-408 [21] Tsuge N. Existence of global solutions for isentropic gas flow in a divergent nozzle with friction. J Math Anal Appl, 2015, 426:971-977 [22] Chou S W, Hong J M, Huang B C, Quita R. Global bounded variation solutions describing Fanno-Rayleigh fluid flows in nozzles. Math Models Methods Appl Sci, 2018, 28:1135-1169 [23] Sun Q Y, Lu Y G, Klingenberg C. Global L∞ Solutions to System of Isentropic Gas Dynamics in a Divergent Nozzle with Friction. Acta Mathematica Scientia, 2019, 39(2):1213-1218 [24] Huang F M, Marcati P, Pan R H. Convergence to the Barenblatt solution for the compressible Euler equations with damping and vacuum. Arch Ration Mech Anal, 2005, 176:1-24 [25] Huang F M, Pan R H, Wang Z. L1 convergence to the Barenblatt solution for compressible Euler equations with damping. Arch Ration Mech Anal, 2011, 200:665-689 [26] Chen C, Xie C J. Three dimensional steady subsonic Euler flows in bounded nozzles. J Differential Equations, 2014,256:684-3708 [27] Weng S. A new formulation for the 3-D Euler equations with an application to subsonic flows in a cylinder. Indiana Univ Math J, 2015, 64:1609-1642 [28] Shapiro A H. The dynamics and thermodynamics of compressible fluid flow. Vol 1. New York:Ronald Press Co, 1953 [29] Courant R, Friedrichs K O. Supersonic flow and shock waves. New York-Heidelberg:Springer-Verlag, 1976 [30] Dafermos C M. Hyperbolic Conservation Laws in Continuum Physics. Berlin Heidelberg:Springer-Verlag, 2010 [31] Benzoni-Gavage S, Serre D. Multidimensional Hyperbolic Partial Differential Equations:First-order Systems and Applications. Oxford:Clarendon Press, 2007 [32] Venttsel A D. On boundary conditions for multi-dimensional diffusion processes. Theor Probability Appl, 1959, 4:164-177 [33] Apushkinskaya D E, Nazarov A I. A survey of results on nonlinear Venttsel problems. Appl Math, 2000, 45:69-80 [34] Luo Y, Trudinger N S. Linear second order elliptic equations with Venttsel boundary conditions. Proc Roy Soc Edinburgh Sect A, 1991, 118:193-207 [35] Gilbarg D, Trudinger N S. Elliptic partial differential equations of second order. Berlin:Springer-Verlag, 2001 [36] Walter W. Ordinary differential equations. New York:Springer-Verlag, 1998 |