[1] Larsen E W, Zweifel P F. On the spectrum of the linear transport operator. J Mathematical Phys, 1974, 15:1987-1997 [2] Cercignani C, Ilner R, Pulvirenti M. The Mathematical Theory of Gases. New York:Springer Verlag, 1994 [3] Latrach K. On the spectrum of the transport operator with abstract boundary conditions in slab geometry. J Math Anal Appl, 2000, 252:1-17 [4] Mokhtar-Kharroubi M. Mathematical topics in neutron transport theory. New aspects, Series on Advances in Mathematics for Applied Sciences 46. Singapor:World Scientific Publishing, 1997 [5] Mokhtar-Kharroubi M. Optimal spectral theory of the linear Boltzmann equations. J Funct Anal, 2005, 226:21-47 [6] Sbihi M. Spectral theory of neutron transport semigroups with partly elastic collision operators. J Math Phys, 2006, 47:123502(12 pages) [7] Sbihi M. Analyse Spectrale De Modèles Neutroniques. Besançon:Thèse de Doctorat de l'université de Franche-Comté, 2005 [8] Ukai S. Eigenvalues of the neutron transport operator for a homogeneous finite moderator. J Math Ana Appl, 1967, 18:297-314 [9] Vidav I. Existence and uniqueness of nonnegative eigenfunctions of the Boltzmann operator. J Math Anal Appl, 1968, 22:144-155 [10] Vidav I. Spectra a perturbed semigroups with applications to transport theory. J Math Anal Appl, 1970, 30:264-279 [11] Voigt J. Spectral properties of the neutron transport equation. J Math Anal App, 1985, 106:140-153 [12] Weis L. A generalization of the Vidav-Jorgens perturbation theorem for semigroup and its application to transport theory. J Math Anal Appl, 1988, 129:6-23 [13] Latrach K. Compactness results for transport equations and applications. Math Models Methods Appl Sci, 2001, 11:1181-1202 [14] Beals R, Protopopescu V. Abstract time-dependent transport equations. J Math Anal Appl, 1987, 121:370-405 [15] Cessenat M. Théorèmes de trace Lp pour des espaces de fonctions de la neutronique. C R Acad Sci Paris tome 299, 1984, 16(1):831-834 [16] Cessenat M. Théorèmes de trace pour des espaces de fonctions de la neutronique. C R Acad Sci Paris tome 300, 1985, 3(1):89-92 [17] Schechter M. Spectra of Partial Differential Operators. Amsterdam:North-Holland, 1971 [18] Marek I. Frobenius theory of positive operators:Comparison theorems and applications. SIAM J Appl Math, 1970, 19:607-628 [19] Anselone P M, Palmer T W. Collectively compact sets of linear operators. Pacific J Math, 1968, 25:417-422 [20] Yosida K. Functional Analysis. New York:Springer-Verlag, 1980 [21] Kosad Y, Latrach K. Regularity of the solution to the linear Boltzmann equation in finite bodies. J Math Anal Appl, 2017, 48(1):506-537 [22] Kaper H G, Lekkerkerker C G, Hejtmanek J. Spectral methods in linear transport theory//Operator Theory:Advances and Application Vol 5. Basel:Birkhäuser, 1982 [23] Reed M, Simon B. Methods of modern mathematical physics. I. Functional analysis. New York-London:Academic Press, 1972 [24] Mayer-Niberg P. Banach Lattices. New York:Springer Verlag, 2001 [25] Lods B. On linear Kinetic equations involving unbounded cross-section. Math Methods Appl Sci, 2004, 27:1049-1075 [26] Takac P. A spectral mapping theorem for the exponential function in linear transport theory. Transp Theory Stat Phys, 1985, 14:655-667 [27] Dunford N, Schwartz J T. Linear Operators:Part I. New York:Intersciences, 1958 [28] Nagel R. One-parameter Semigroups of Positive Operators//Lecture Notes Math, 1184. New York:Springer Verlag, 1986 [29] Kato T. Perturbation Theory for Linear Operators. New York:Springer-Verlag, 1966 |