[1] Heymans N, Bauwens J C. Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheologica Acta, 1994, 33:210-219 [2] Glockle W, Nonnenmacher T. A fractional calculus approach to self-similar protein dynamics. Biophysical Journal, 1995, 68:46-53 [3] Metzler R, Klafter J. The random walk's guide to anomalous diffusion:a fractional dynamics approach. Physics Reports, 2000. 339:1-77 [4] Arena P, Fortuna L, Porto D. Chaotic behavior in noninteger-order cellular neural networks. Physical Review E, 2000, 61:7761-7781 [5] Schumer R, Benson D, Meerschaertb M, Wheatcraft S. Eulerian derivative of the fractional advectiondispersion equation. J Contaminant, 2001, 48:69-88 [6] Picozzi S, West B J. Fractional Langevin model of memory in financial markets, Physics Review E, 2002, 66:46-118 [7] Henry B, Wearne S. Existence of Turing instabilities in a two-species fractional reaction-diffusion system. SIAM J Appl Math, 2002, 62:870-887 [8] Reyes-Melo E, Martinez-Vega J, Guerrero-Salazar C, Ortiz-Mendez U. Application of fractional calculus to the modeling of dielectric relaxation phenomena in polymeric materials. J Appl Phys Sci, 2005, 98:923-935 [9] Hilfer R. Anomalous transport:Foundations and applications//Klages R, Radons G, Sokolov I M. Anomalous Transport:Foundations and Applications. Wiley-VCH, 2008:17-74 [10] Lundstrom B, Higgs M, Spain W, Fairhall A. Fractional differentiation by neocortical pyramidal neurons. Nature Neuroscience, 2008, 11:1335-1342 [11] Matsuzaki T, Nakagawa M. A chaos neuron model with fractional differential equation. J Phys Soc Jpn, 2003, 72:2678-2684 [12] Magin R L. Fractional Calculus in Bioengineering. Begell House Publishers, 2006 [13] Herrmann R. Fractional Calculus:An Introduction for Physicists. Singapore:World Scientific, 2011 [14] Wang J R, Zhou Y, Feckan M. On the nonlocal Cauchy problem for semilinear fractional order evolution equations. Cent Eur J Math, 2014, 12:911-922 [15] Henderson J, Kosmatov N. Eigenvalue comparison for fractional boundary value problems with the Caputo derivative. Fract Calc Appl Anal, 2014, 17:872-880 [16] Castaing C, Truong L X, Phung P D. On a fractional differential inclusion with integral boundary condition in Banach spaces. J Nonlinear Convex Anal, 2016, 17:441-471 [17] Ahmad B, Ntouyas S K, Tariboon J. A nonlocal hybrid boundary value problem of Caputo fractional integro-differential equations. Acta Mathematica Scientia, 2016, 36B:1631-1640 [18] Ge Z M, Ou C Y. Chaos synchronization of fractional order modified Duffing systems with parameters excited by a chaotic signal. Chaos Solitons Fractals, 2008, 35:705-717 [19] Zhang F, Chen G, Li C, Kurths J. Chaos synchronization in fractional differential systems. Phil Trans R Soc, 2013, 371A:20120155 [20] Ostoja-Starzewski M. Towards thermoelasticity of fractal media. J Thermal Stresses, 2007, 30:889-896 [21] Povstenko Y Z. Fractional Thermoelasticity. New York:Springer, 2015 [22] Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Amsterdam:Elsevier Science BV, 2006 [23] Diethelm K. The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type. Heidelberg:Springer-Verlag, 2010 [24] Ding X L, Nieto J J. Analytical solutions for coupling fractional partial differential equations with Dirichlet boundary conditions. Commun Nonlinear Sci Numer Simul, 2017, 52:165-176 [25] Ahmad B, Nieto J J, Alsaedi A, Aqlan M H. A coupled system of Caputo-type sequential fractional differential equations with coupled (periodic/anti-periodic type) boundary conditions. Mediterr J Math, 2017, 14:227 [26] Ahmad B, Ntouyas S K. A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations. Fract Calc Appl Anal, 2014, 17(2):348-360 [27] Aljoudi S, Ahmad B, Nieto J J, Alsaedi A. On coupled Hadamard type sequential fractional differential equations with variable coefficients and nonlocal integral boundary conditions. Filomat, 2017, 31:6041- 6049 [28] Khalaf S L, Khudair A R. Particular solution of linear sequential fractional differential equation with constant coefficients by inverse fractional differential operators. Differ Equ Dyn Syst, 2017, 25:373-383 [29] Aljoudi S, Ahmad B, Nieto J J, Alsaedi A. A coupled system of Hadamard type sequential fractional differential equations with coupled strip conditions. Chaos Solitons & Fractals, 2016, 91:39-46 [30] Tariboon J, Ntouyas S K, Sudsutad W. Coupled systems of Riemann-Liouville fractional differential equations with Hadamard fractional integral boundary conditions. J Nonlinear Sci Appl, 2016, 9:295-308 [31] Ahmad B, Alsaedi A, Aljoudi S, Ntouyas S K. On a coupled system of sequential fractional differential equations with variable coeffcients and coupled integral boundary conditions. Bull Math Soc Sci Math Roumanie (NS), 2017, 60(108):3-18 [32] Ahmad B, Nieto J J. Boundary value problems for a class of sequential integrodifferential equations of fractional order. J Funct Spaces Appl, 2013, Art ID 149659, [33] Granas A, Dugundji J. Fixed Point Theory. New York:Springer-Verlag, 2003 |