[1] Metzler R, Klafter J. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep, 2000, 339: 1–77
[2] Metzler R, Klafter J. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J Phys A: Math Gen, 2004, 37: R161–R208
[3] Meerschaert M M, Tadjeran C. Finite difference approximations for fractional advection-dispersion flow equations. J Comput Appl Math, 2003, 172: 65–77
[4] Ervin V J, Heuer N, Roop J P. Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation. SIAM J Numer Anal, 2007, 45: 572–591
[5] Liu F, Anh V, Turner I. Numerical solution of the space fractional Fokker-Planck equation. J Comput Appl Math, 2004, 166: 209–219
[6] Meerschaert M M, Tadjeran C. Finite difference approximations for two-sided space-fractional partial dif-ferential equations. Appl Numer Math, 2006, 56: 80–90
[7] Ahmadabadi M N, Arab M, MalekGhaini F M. The method of fundamental solutions for the inverse space-dependent heat source problem. Eng Anal Bound Elem, 2009, 33: 1231–1235
[8] Cannon J R, Duchateau P. Structural identification of an unknown source term in a heat equation. Inverse Prob, 1998, 14: 535–551
[9] Farcas A, Lesnic D. The boundary-element method for the determination of a heat source dependent on one variable. J Eng Math, 2006, 54: 375–388
[10] Li G S. Data compatibility and conditional stability for an inverse source problem in the heat equation. Appl Math Comput 2006, 173: 566–581
[11] Liu F B. A modified genetic algorithm for solving the inverse heat transfer problem of estimating plan heat source. Int J Heat Mass Transfer, 2008, 51: 3745–3752
[12] Liu C H. A two-stage LGSM to identify time-dependent heat source through an internal measurement of temperature. Int J Heat Mass Transfer, 2009, 52: 1635–1642
[13] Li X X, Yang F. The truncation method for identifying the heat source dependent on a spatial variable. Comput Math Appl, 2011, 62: 2497–2505
[14] Ma Y J, Fu C L, Zhang Y X. Identification of an unknown source depending on both time and space variables by a variational method. Appl Math Model, 2012, 36: 5080–5090
[15] Wei T, Wang J C. Simultaneous determination for a space-dependent heat source and the initial data by the MFS. Eng Anal Bound Elem, 2012, 36: 1848–1855
[16] Yan L, Yang F L, Fu C L. A meshless method for solving an inverse spacewise-dependent heat source problem. J Comput Phys, 2009, 228: 123–136
[17] Yamamoto M. Conditional stability in determination of force terms of heat equations in a rectangle. Math
Comput Modell, 1993, 18: 79–88
[18] Yang F, Fu C L, Li X X. The inverse problem of identifying the unknown source for the modified Helmholtz equation. Acta Mathematica Scientia, 2012, 32A(3): 566–575
[19] Li X X, Yang F, Liu J, Wang L. The quasi reversibility regularization method for identifying the unknown source for the modified helmholtz equation. J Appl Math, 2013, 2013: 1–8
[20] Yang F, Guo H Z, Li X X. The simplified tikhonov regularization method for identifying the unknown source for the modified helmholtz equation. Math Probl Eng, 2011, 2011: 1–14
[21] Yang F, Fu C L. The inverse problem of the identification of the heat source for the poisson equation. Acta
Mathematica Scientia, 2010, 30 A(4): 1080–1087
[22] Zhang Y, Xu X. Inverse source problem for a fractional diffusion equation. Inverse Prob, 2011, 27: 035010
[23] Wei H, Chen W, Sun H G, Li X C, A coupled method for inverse source problem of spatial fractional anonmalous diffusion equations. Inverse Probl Sci Eng, 2010, 18: 945–956
[24] Murio D A,Mejia C E. Source terms identification for time fractional diffusion equation. Revista Colombiana de Matematicas, 2008, 42: 25–46
[25] Wei T, Zhang Z Q. Reconstruction of a time-dependent source term in a time-fractional diffusion equation. Eng Anal Bound Elem, 2013, 37: 23–31
[26] Wang J G, Zhou Y B, Wei T. Two regularization methods to identify a space-dependent source for the time-fractional diffusion equation. Appl Numer Math, 2013, 68: 39–57
[27] Tian W Y, Li C, Deng W H, Wu Y J. Regularization methods for unknown source in space fractional diffusion equation. Math Comput Simulat, 2012, 85: 45–56
[28] Mainardi F, Luchko Y, Pagnini G. The fundamental solution of the space-time fractional diffusion equation. Fract Calc Appl Anal, 2001, 4: 153–192
[29] Benson D A, Wheatcraft S W, Meerschaert M M. The fractional-order governing equation of l’evy motion. Water Resour Res, 2000, 36: 1413–1423
[30] Gorenflo R, Mainardi F, Moretti D, Pagnini G, Paradisi P. Discrete random walk models for space-time fractional diffusion. Chem Phys, 2002, 284: 521–541
[31] Tautenhahn U. Optimality for ill-posed problems under general source conditions. Num Funct Anal Optim, 1998, 19: 377–398
[32] Xiong X T, Zhu L Q, Li M. Regularization methods for a problem of analytic continuation. Math Comput Simul, 2011, 82: 332–345
[33] Xiong X T, Wang J X. A Tikhonov-type method for solving a multidimensional inverse heat source problem in an unbounded domain. J Comput Appl Math, 2012, 236: 1766–1744
[34] Zhao Z Y, Meng Z H. A modified Tikhonov regularization method for a backward heat equation. Inverse Probl Sci Eng, 2011, 19: 1175–1182
[35] Engl H W, Hanke M, Neubauer A. Regularization of Inverse Problem. Boston, MA: Kluwer Academic, 1996
[36] Eld´en L, Berntsson F, Regi`nska T. Wavelet and Fourier methods for solving the sideways heat equation. SIAM J Sci Comput, 2000, 21: 2187–2205 |