[1] Chen Z M, Zou J. Finite element methods and their convergence for elliptic and parabolic interface problems. Numer Math, 1998, 79(2):175-202 [2] Bramble J H, King J T. A finite element method for interface problems in domains with smooth boundaries and interfaces. Adv Comput Math, 1996, 6(1):109-138 [3] Huang J G, Zou J. A mortar element method for elliptic problems with discontinuous coefficients. IMA J Numer Anal, 2002, 22(4):549-576 [4] LeVeque R, Li Z L. The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J Numer Anal, 1994, 31(4):1019-1044 [5] Li Z L, Lin T, Wu X H. New Cartesian grid methods for interface problems using the finite elment formulation. Numer Math, 2003, 96(1):61-98 [6] Dryja M. On discontinuous Galerkin methods for elliptic problems with discontinuous coefficients. Comput Methods Appl Math, 2003, 3(1):76-85 [7] Wang S Q, Samulyak R, Guo T F. An embedded boundary method for elliptic and parabolic problems with interfaces and application to multi-material systems with phase transitions. Acta Math Sci, 2010, 30B(2):499-521 [8] Ren X F, Wei J C. On a two-dimensional elliptic problem with large exponent in nonlinearity. Trans Amer Math Soc, 1994, 343(2):749-763 [9] Cockburn B, Shu C-W. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J Numer Anal, 1998, 35(6):2440-2463 [10] Cockburn B, Dawson C. Some extensions of the local discontinuous Galerkin method for convection-diffusion equations in multidimensions//Whiteman J R, ed. Proceedings of the Conference on the Mathematics of Finite Elements and Applications. Amsterdam:MAFELAP X Elsevier, 1999:225-238 [11] Castillo P, Cockburn B, Perugia I et al. An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J Numer Anal, 2000, 38(5):1676-1706 [12] Cockburn B, Kanschat G, Perugia I et al. Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J Numer Anal, 2001, 39(1):264-285 [13] Cockburn B, Karniadakis G E, Shu C-W. The development of discontinuous Galerkin methods//Cockburn B, Karniadakis G E, Shu C-W, ed. Discontinuous Galerkin Methods:Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering, volume 11. Berlin:Springer, 2000:3-50 [14] Cockburn B, Dong B. An analysis of the minimal dissipation local discontinuous Galerkin method for convection-diffusion problems. J Sci Comput, 2007, 32(2):233-262 [15] Huynh LN T, Nguyen N C, Peraire J et al. A high-order hybridizable discontinuous Galerkin method for elliptic interface problems. Int J Numer Methods Eng, 2013, 93(2):183-200 [16] Qiu W F, Solano M, Vega P. A high order HDG method for curved-interface problems via approximations from straight triangulations. J Sci Comput, 2016, 69:1384-1407 [17] Dong H X, Wang B, Xie Z Q. An unfitted hybridizable discontinuous Galerkin method for the Possion interface problem and its error analysis. IMA J Numer Anal, 2017, 37(1):444-476 [18] Ciarlet P. The Finite Element Method for Elliptic Problems. Amsterdam, New York:North-Holland, 1978 [19] Stein E M. Singular Integrals and Differentiability Properties of Functions. Princeton:Princeton University Press, 1970 [20] Li B Q. Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer. London:Springer, 2006 |