[1] Hern´andez E, Weiss G. A First Course on Wavelets. New York: CRC Press, 1996
[2] Daubechies I. Ten Lectures on Wavelets. Philadelphia: SIAM, 1992
[3] Mallat S. A Wavelet Tour of Signal Processing. San Diego: Academic Press, 1998
[4] Lu D, Fan Q. Characterizations of Lp(R) using tight wavelet frames. Wuhan University Journal of Natural Sciences, 2010, 15: 461–466
[5] Lu D, Fan Q. Two schemes for lifting frames. Acta Math Sci, 2010, 30A(3): 603–612 (in Chinese)
[6] Lu D, Fan Q. A class of tight framelet packets. Czechoslovak Mathematical Journal (Accepted)
[7] Rieder A. The wavelet transform on Sobolev spaces and its approximation properties. Numer Math, 1991, 58: 875–894
[8] Daubechies I. The wavelet transform, time-frequency localisation and signal analysis. IEEE Trans Inform Theory, 1990, 36: 961–1005
[9] Zhao K. Simultaneous approximation and quasi-interpolants. J Approx Theory, 1996, 85: 201–217
[10] Han B, Shen Z. Dual wavelet frames and Riesz bases in Sobolev spaces. Constr Approx, 2009, 29: 369–406
[11] Bastin F, Boigelot C. Biorthogonal wavelets in Hm(R). J Fourier Anal Appl, 1998, 4: 749–768
[12] Jia R, Jiang Q, Lee S L. Convergence of cascade algorithms in Sobolev spaces and integrals of wavelets. Numer Math, 2002, 91: 453–473
[13] Bastin F, Laubin P. Compactly supported wavelets in Sobolev spaces of integer order. Appl Comput Harmonic Anal, 1997, 4: 51–57
[14] Bastin F, Laubin P. Regular compactly supported wavelets in Sobolev spaces. Duke Math J, 1997, 87: 481–508
[15] Li D F, Wen C L. Properties of multiresolution analysis in Sobolev spaces. Pure Appl Math, 2000, 16: 1–5 (in Chinese)
[16] Xue M Z, Li D F, Li R, Jiao L C. A characteristic description of multiresolution analysis with arbitrary dilation matrix in Sobolev space Hs(Rn). Acta Mathematica Sinica, 2003, 46: 1063–1072 (in Chinese)
[17] Xue M Z, Zhu X G, Jiao L C. The necessary conditions for the frames on Sobolev space. Chin J Eng Math, 2003, 20: 111–115 (in Chinese)
[18] Triebel H. Theory of Function Spaces. Boston: Birkh¨auser Verlag, 1992
[19] Yang Z Y. Boundedness of Calder´on-Lygmund operators on Besov spaces and its application. Acta Math Sci, 2010, 30B(4): 1338–1346
[20] Liu H, Liu Y, Wang H. Multiresolution analysis, self-similar tilings and Haar wavelets on the Heisenberg groug. Acta Math Sci, 2009, 29B(5): 1251–1266 |