[1] Chui C K, Lian J A. Construction of compactly supported symmetric and antisymmetric orthonormal wavelets with scaling = 3. Appl Comput Harmon Anal, 1995, 2(1): 21–51
[2] Lina J M, Mayrand M. Complex Daubechies wavelets. Appl Comput Harmon Anal, 1995, 2(3): 219–229
[3] Shen Y, Li S, Mo Q. Complex wavelets and framelets from pseudo splines. J Fourier Anal Appl, 2010, 16(6): 885–900
[4] Han B, Ji H. Compactly supported orthogonal complex wavelets with dilation 4 and symmetry. Appl Comput Harmon Anal, 2009, 26(3): 422–431
[5] Yang S Z, He Y T. Multidimensional compactly supported orthogonal symmetric wavelets. Acta Math Sci, 2010, 30A(2): 375–385
[6] Yang J W, Li L Q, Tang Y Y. Construction of compactly supported bivariate orthogonal wavelets by univariate orthogonal wavelets. Acta Math Sci, 2005, 25B(2): 233–242
[7] Han B. Matrix extension with symmetry and applications to symmetric orthonormal complex M-wavelets. J Fourier Anal Appl, 2009, 15(5): 684–705
[8] Han B. Construction of wavelets and framelets by the projection method. Int J Appl Math Appl, 2008, 1(1): 1–40
[9] Heller P. Rank M wavelets with N vanishing moments. SIAM J Matrix Anal Appl, 1995, 16(2): 502–519
[10] Chui C K. An Introduction to Wavelets. Boston MA: Kluwer, 1992
[11] Han B. Symmetric orthonormal complex wavelets with masks of arbitrarily high linear-phase moments and sum rules. Adv Comput Math, 2010, 32(2): 209–237
[12] Belogay E, Wang Y. Compactly supported orthogonal symmetric scaling functions. Appl Comput Harmon Anal, 1999, 7(2): 137–150
[13] Petukhov A. Construction of symmetric orthogonal bases of wavelets and tight wavelet frames with integer dilation factor. Appl Comput Harmon Anal, 2004, 17(2): 198–210
[14] Karoui A. Wavelet bases with a general integer dilation factor d ≥2 and better regularity properties. Appl Math Comput, 2009, 214(2): 557–568
[15] Han B. Symmetric orthonormal scaling functions and wavelets with dilation factor 4. Adv Comput Math, 1998, 8(3): 221–247 |