数学物理学报(英文版) ›› 2009, Vol. 29 ›› Issue (5): 1341-1350.doi: 10.1016/S0252-9602(09)60107-7

• 论文 • 上一篇    下一篇

A NOTE ON CONVOLUTION-TYPE CALDERÓN-ZYGMUND OPERATORS

 杨占英, 杨奇祥   

  1. 1.College of Mathematics and Statistics, Wuhan University, Wuhan 430072, |China
    2.College of Computer Science, South-Central University for Nationalities, Wuhan 430074, China
  • 收稿日期:2007-03-28 修回日期:2008-09-30 出版日期:2009-09-20 发布日期:2009-09-20
  • 基金资助:

    Sponsored by the NSF of South-Central University for Nationalities (YZZ08004) and the Doctoral programme
    foundation of National Education Ministry of China  

A NOTE ON CONVOLUTION-TYPE CALDERÓN-ZYGMUND OPERATORS

 YANG Zhan-YIng, YANG Qi-Xiang   

  1. 1.College of Mathematics and Statistics, Wuhan University, Wuhan 430072, |China
    2.College of Computer Science, South-Central University for Nationalities, Wuhan 430074, China
  • Received:2007-03-28 Revised:2008-09-30 Online:2009-09-20 Published:2009-09-20
  • Supported by:

    Sponsored by the NSF of South-Central University for Nationalities (YZZ08004) and the Doctoral programme
    foundation of National Education Ministry of China  

摘要:

For convolution-type Calderón-Zygmund operators, by the boundedness on Besov spaces and Hardy spaces, applying interpolation theory and duality, it is  known that Hörmander condition can ensure the boundedness on
Triebel-Lizorkin spaces Fp0,q(1< p, q < ∞)  and on a party of endpoint spaces F10,q(1 ≤ q ≤ 2), but this idea is invalid for endpoint Triebel-Lizorkin spaces F10,q(2 < q ∞). In this article, the authors apply wavelets and interpolation theory to establish the boundedness on F10,q(2 < q ≤ ∞) under an integrable condition which
approaches Hörmander condition infinitely.

关键词: convolution type Calderón Zygmund operators, Triebel Lizorkin spaces, wavelets, atomic decomposition

Abstract:

For convolution-type Calderón-Zygmund operators, by the boundedness on Besov spaces and Hardy spaces, applying interpolation theory and duality, it is  known that Hörmander condition can ensure the boundedness on
Triebel-Lizorkin spaces Fp0,q(1< p, q < ∞)  and on a party of endpoint spaces F10,q(1 ≤ q ≤ 2), but this idea is invalid for endpoint Triebel-Lizorkin spaces F10,q(2 < q ∞). In this article, the authors apply wavelets and interpolation theory to establish the boundedness on F10,q(2 < q ≤ ∞) under an integrable condition which
approaches Hörmander condition infinitely.

Key words: convolution type Calderón Zygmund operators, Triebel Lizorkin spaces, wavelets, atomic decomposition

中图分类号: 

  • 42B20