[1] Anderson F W, Fuller K R. Rings and Categories of Modules. New York: Springer-Verlag, 1974
[2] Auslander M, Reiten I, Smalø S O. Representation Theory of Artin Algebras. In: Cambridge Studies in
Advanced Mathematics No 36. Cambridge: Cambridge University Press, 1995
[3] Bican L, Bashir E, Enochs E E. All modules have flat covers. Bull London Math Soc, 2001, 33: 385–390
[4] Enochs E E. Injective and flat covers envelopes and resolvents. Israel J Math, 1981, 39: 189–209
[5] Enochs E E, Jenda O M G. Relative Homological Algebra. Berlin-New York: Walter de Gruyter, 2000
[6] Enochs E E, Garc´a Rozas J R, Jenda O M G. Are covering (enveloping) morphisms minimal? Proc Amer
Math Soc, 2000, 128: 2863–2868
[7] Enochs E E, Garc´a Rozas J R, Jenda O M G. Covering morphisms. Comm Algebra, 2000, 28: 3823–3835
[8] Garc´a Rozas J R. Covers and Envelopes in the Category of Complexes of modules. Boca-Raton-London-
New York: Research Notes in mathematics Series. Chapman & Hall/CRC, 1999
[9] Guil Asensio P A, Herzog I. Sigma-cotorsion rings Adv Math, 2005, 191: 11–28
[10] Goodearl K R. Ring Theory-nonsingular rings and modules. New York: Marcel Dekker, 1976
[11] Hiremath V A. Hopfian Rings and Hopfian Modules. Indian J Pure Appl Math, 1986, 17: 895–900
[12] Mao L X, Ding N Q. Notes on cotorsion modules. Comm Algebra, 2005, 33: 349–360
[13] Rotman J J. An Introduction to Homological Algebra. New York: Academic Press, 1979
[14] Stenstr¨om B. Rings of Quotients. Berlin-Heidelberg-New York: Springer Verlag, 1975
[15] Varadarajan K. Hopfian and Co-Hopfian Objects. Publ Mat, 1992, 36: 293–317
[16] Warfield R B Jr. Purity and algebraic compactness for modules. Pacific J Math, 1969, 28(3): 699–719
[17] Wisbauer R. Foundations of Module and Ring Theory. Philadelphia: Gordon and Breach, 1991
[18] Xu J. Flat Covers of Modules. In: Lecture Notes in Math 1634. Berlin-Heidelberg-New York: Springer
Verlag, 1996 |