[1] Folland G B. Harmonic Analysis in Phase Space. New Jersey: Princeton University Press, 1989
[2] Franchi B. Rectifiability and perimeter in the Heisenberg group. Math Ann, 2001, 321: 479--531
[3] Gelbrich G. Self-similar periodic tilings on the Heisenberg group. J Lie Theory, 1994, 4: 31--37
[4] Gröchenig K, Madych W R. Multiresolution analysis, Haar bases, and self-similar tilings of Rn. IEEE Transactions on Information Theory, 1992, 38: 556--568
[5] Jawerth B, Peng L Z. Compactly supported orthogonal wavelets on the Heisenberg group. Beijing: Research Report No.45 of Insititute Mathematics of Peking University, 2001
[6] Kigami J. Analysis on Fractals. Cambridge: Cambridge University Press, 2001
[7] Lawton W. Infinite convolution products & refinable distributions on Lie groups. Trans Amer Math Soc, 2000, 352: 2913--2936
[8] Liu H P, Peng L Z. Admissible wavelets associated with the Heisenberg group. Pacific J Math, 1997, 180: 101--123
[9] Liu H P, Liu Y, Peng L Z, et al. Cascade algorithm and multiresolution analysis on the Heisenberg
group. Progress in Natural Science, 2005, 15: 602--608
[10] Liu H P, Liu Y. Refinable functions on the Heisenberg group. Comm Pure Appl Anal, 2007, 6: 775--787
[11] Liu M J, Lu S Z. A weighted estimate of the Hormander multiplier on the Heisenberg group. Acta Math Sci, 2006, 26B(1): 134--144
[12] Liu Y, Yu M. Lipschitz continuity of refinable functions on the Heisenberg group. J Math Anal Appl, 2008, 338: 1081--1091
[13] Peng L Z. Wavelets on the Heisenberg Group. Geometry and Nonlinear Partial Differential Equations, AMS/IP Studies in Advanced Mathematics, 2002, 29: 123--131
[14] Stein E M. Harmonic Analysis Real-Variable Methods, Orthogonality, and Oscillatory Integrals. New Jersey: Princeton University Press, 1993
[15] Strichartz R S. Self-similarity on nilpotent Lie group. Contemporary Mathematics, 1992, 140: 123--157
[16] Strichartz R S. Wavelet and self-affine tilings. Constr Approx, 1993, 9: 327--346
[17] Yang Q. D. Multiresolution analysis on non-abelian locally compact groups
[D]. University of Saskatchewan, 1999
|