数学物理学报(英文版) ›› 2014, Vol. 34 ›› Issue (1): 199-208.doi: 10.1016/S0252-9602(13)60137-X

• 论文 • 上一篇    下一篇

LOCAL WELL-POSEDNESS IN SOBOLEV SPACES WITH NEGATIVE INDICES FOR A SEVENTH ORDER DISPERSIVE EQUATION

王宏伟   

  1. Department of Mathematics, Anyang Normal University, Anyang 455000, China
  • 收稿日期:2012-08-23 修回日期:2013-03-18 出版日期:2014-01-20 发布日期:2014-01-20
  • 基金资助:

    This project is supported by the National Natural Science Foundation of China (11171266).

LOCAL WELL-POSEDNESS IN SOBOLEV SPACES WITH NEGATIVE INDICES FOR A SEVENTH ORDER DISPERSIVE EQUATION

 WANG Hong-Wei   

  1. Department of Mathematics, Anyang Normal University, Anyang 455000, China
  • Received:2012-08-23 Revised:2013-03-18 Online:2014-01-20 Published:2014-01-20
  • Supported by:

    This project is supported by the National Natural Science Foundation of China (11171266).

摘要:

This paper is concerned with the Cauchy problem of a seventh order dispersive equation. We prove local well-posedness with initial data in Sobolev spaces Hs(R) for negative indices of s > −11/4 .

关键词: Cauchy problem, local well-posedness, Sobolev spaces, bilinear estimate

Abstract:

This paper is concerned with the Cauchy problem of a seventh order dispersive equation. We prove local well-posedness with initial data in Sobolev spaces Hs(R) for negative indices of s > −11/4 .

Key words: Cauchy problem, local well-posedness, Sobolev spaces, bilinear estimate

中图分类号: 

  • 35K30