[1] Al-Qassem H, Al-Salman A. Rough Marcinkiewicz integral operators. Int J Math Math Sci, 2001, 27:495-503
[2] Auscher P, Yang Q X. B-C-R algorithm and the T(b) theorem. Publicacions Matemtiques, 2009, 53:179-196
[3] Banuelos R. Martingale transforms and related singular integrals. Trans Amer Math Soc, 1986, 293:547-564
[4] Beylkin G, Coifman R, Rokhlin V. Fast wavelet transforms and numerical algorithms I. Communications on Pure and Applied Mathematics, 1991, 44(2):141-183
[5] Chen D X, Lu S Z. Lp boundedness of parabolic Littlewood-Paley operator with rough kernel belonging to F(Sn-1). Acta Mathematica Scientia, 2011, 31B:343-350
[6] Cheng L X, Pan Y. Lp bounds for singular integrals associated to surfaces of revo lution. J Math Anal Appl, 2002, 265:163-169
[7] Chen J, Zhang C. Boundedness of rough singular integral on the Triebel-Lizorkin spaces. J Math Anal Appl, 2008, 337:1048-1052
[8] Chen Y, Ding Y. Rough singular integral operators on Triebel-Lizorkin spaces and Besov spaces. J Math Anal Appl, 2008, 347:493-501
[9] Deng D G, Yan L X, Yang Q X. Blocking analysis and T(1) theorem. Science in China, 1998, 41:801-808
[10] Deng D G, Yan L X, Yang Q X. On Hörmander condition. Chinese Science Bulletin, 1997, 42:1341-1345
[11] Deng D G, Yan L X, Yang Q X. L2 boundedness of commutators of Calderón-Zygmundsingular integral operators. Progress in Natural Science, 1998, 8(4):416-427
[12] Ding Y, Fan D, Pan Y. Lp-boundedness of Marcinkiewicz integral with Hardy space function kernel. Acta Math Sinica (English Series), 2000, 16:593-600
[13] Duoandikoetxea J, Rubio de Francia J L. Maximal and singular integral operators via Fourier transform estimates. Invent Math, 1986, 84:541-561
[14] Duoandikoetxea J. Weighted norm inequalities for homogeneous singular integrals. Trans Amer Math Soc, 1993, 336:869-880
[15] Engquist B, Osher S, Zhong S. Fast wavelet based algorithms for linear evolution equations. Siam Journal on Scientific Computing, 1994, 15(4)
[16] Fan D, Guo K, Pan Y. A note of a rough singular integral operator. Math Ineq and Appl, 1999, (2):73-81
[17] Grafakos L, Stefanov A. Convolution Calderón-Zygmund singular integral operators with rough kernels. Indiana Univ Math J, 1998, 47:455-469
[18] Grafakos L, Honzik P, Ryabogin D. On the p-independence boundedness property of Caldern-Zygmund theory. J fr die reine und angewandte Mathematik (Crelles Journal), 2007, 2007:227-234
[19] Haroske D, Triebel H. Wavelet bases and entropy numbers in weighted function spaces. Mathematische Nachrichten, 1985, 278(1/2):108-132
[20] Hu G. L2(Rn) boundedness for the commutators of convolution operators. Nagoya Math J, 2001, 163:55-70
[21] Hu G. Lp(Rn) boundedness for the commutator of a homogeneous singular integral operator. Studia Math, 2003, 154:13-27
[22] Keinert F. Biorthogonal wavelets for fast matrix computations. Applied and Computational Harmonic Analysis, 1994, 2(1):147-156
[23] Lau K S, Yan L X. Wavelet decomposition of Calderón-Zygmund operators on function spaces. Journal of the Australian Mathematical Society, 2004, 77:29-46
[24] Meyer Y. Ondelettes et opérateurs. I et II. Paris:Hermann, 1991-1992
[25] Meyer Y, Yang Q X. Continuity of Calderón-Zygmund operators on Besov or Triebel-Lizorkin spaces. Anal Appl (Singap), 2008, 6(1):51-81
[26] Recchioni M C, Zirilli F. The use of wavelets in the operator expansion method for time dependent acoustic obstacle scattering, Siam Journal on Scientific Computing, 2003, 25(4):1158-1186
[27] Stein E M. Harmonic analysis-Real variable methods, orthogonality, and integrals. New Jersey:Princeton University Press, 1993
[28] Triebel H. Theory of Function Spaces. Basel:Birkhäser-Verlag, 1983
[29] Yang Q X. Wavelet and distribution. Beijing:Beijing Science and Technology Press, 2002
[30] Yang Q X. Fast algorithms for Calderón-Zygmund singular integral operators. Appl Comp Harmonic Analysis, 1996, 3:120-126
[31] Yang Q X. Singular integral operators and approximation by wavelets. Advance in Mathematics (in Chinese), 2003, 32(5):547-552 |