[1] Carrillo J A, Goudon T. Stability and asymptotic analysis of a fluid-particle interaction model. Commun Partial Differ Equ, 2006, 31: 1349-1379 [2] Berres S, Bürger R, Karlsen K H, et al. Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression. SIAM J Appl Math, 2003, 64(1): 41-80 [3] Baranger C, Boudin L, Mancini S. A modeling of biospray for the upper airways. CEMRACS2004 Mathematics and Applications to Biology and Medicine, ESAIM Proc, 2005, 14: 41-47 [4] Vinkovic I, Aguirre C, Simoëns S, et al. Large eddy simulation of droplet dispersion for inhomogeneous turbulent wall flow. International Journal of Multiphase Flow, 2006, 32: 344-364 [5] Williams F A. Spray combustion and atomization. Phys Fluids, 1958, 1: 541-555 [6] Williams F A. Combustion Theory.2nd ed. Menlo Park, CA: Benjamin Cummings Publ, 1985 [7] Carrillo J A, Karper T, Trivisa K. On the dynamics of a fluid-particle interaction model: the bubbling regime. Nonlinear Anal, 2011, 74: 2778-2801 [8] Fang D Y, Zi R Z, Zhang T. Global classical large solutions to a 1D fluid-particle interaction model: The bubbling regime. J Math Phys, 2012, 53(3): 41-80 [9] Song Y K, Yuan H J, Chen Y, et al. Strong solutions to a 1D fluid-particle interaction non-newtonian model: The bubbling regime. J Math Phys, 2013, 54(9): 41-80 [10] Ballew J, K Trivisa. Weakly dissipative solutions and weak-strong uniqueness for the Navier Stokes Smolunchowski system. Nonlinear Analysis Series A: Theory, Methods Applications, 2013, 91: 1-19 [11] Ballew J. Low Mach number limits to the Navier Stokes Smolunchowski system. Hyperbolic Problems: Theory, Numerics, Applications. AIMS Series on Applied Mathematics, 2014, 8: 301-308 [12] Huang B Y, Ding S J, Wen H Y. Local classical solutions of compressible Navier-Stokes-Smoluchowski equations with vacuum. Discret Contin Dyn Syst, 2016, 9(6): 1717-1752 [13] Chen Y S, Ding S J, Wang W J. Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discret Contin Dyn Syst, 2016, 36: 5287-5307 [14] Ding S J, Huang B Y, Wen H Y. Global well-posedness of classicial solutions to a fluid-particle interaction model in $\mathbb{R}^3$. J Diff Eqns, 2017, 263: 8666-8717 [15] Matsumura A, Nishida T. Initial boundary problems for the equations of motion of compressible viscous and heat-conducive fluids. Commun Math Phys, 1983, 89: 445-464 [16] Zheng L, Wang S, Li L R. Local classical solutions of 3D fluid-particle interaction model: the flowing regimen. Acta Math Sci, 2018, 38A(6): 1173-1192 |