数学物理学报(英文版) ›› 2018, Vol. 38 ›› Issue (3): 745-755.doi: 10.1016/S0252-9602(18)30780-X
• 论文 • 下一篇
孔德兴1, 刘琦2
Dexing KONG1, Qi LIU2
摘要:
In this article, we investigate the hyperbolic geometry flow with time-dependent dissipation
(∂2gij)/(∂t2) + μ/((1 + t)λ) (∂gij)/∂t=-2Rij,
on Riemann surface. On the basis of the energy method, for 0 < λ ≤ 1, μ > λ + 1, we show that there exists a global solution gij to the hyperbolic geometry flow with time-dependent dissipation with asymptotic flat initial Riemann surfaces. Moreover, we prove that the scalar curvature R(t, x) of the solution metric gij remains uniformly bounded.