[1] Balan R M, Tudor C A. The stochastic heat equation with a fractional-colored noise: existence of the solution. Latin Amer J Probab Math Stat, 2008, 4: 57-87 [2] Bakry D, Gentil I, Ledoux M.Analysis and Geometry of Markov Diffusion Operators. Fundamental Principles of Mathematical Sciences, Vol 348. Berlin: Springer, 2014 [3] Bobkov S, Gentil I, Ledoux M. Hypercontractivity of Hamilton-Jacobi equations. J Math Pures Appl, 2001, 80(7): 669-696 [4] Bobkov S G, Götze F. Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J Funct Anal, 1999, 163(1): 1-28 [5] Boucheron S, Lugosi G, Massart P.Concentration Inequalities: a Nonasymptotic Theory of Independence. Oxford: Oxford University Press, 2013 [6] Boufoussi B, Hajji S. Transportation inequalities for stochastic heat equations. Statist Probab Lett, 2018, 139: 75-83 [7] Bayraktar E, Poor V, Sircar R. Estimating the fractal dimension of the SP 500 index using wavelet analysis. Int J Theor Appl Finan, 2004, 7(5): 615-643 [8] Del Castillo-Negrete D, Carreras B A, Lynch V E. Front dynamics in reaction diffusion systems with levy flights: a fractional diffusion approach. Phys Rev Lett, 2003, 91(1): 018302 [9] Dalang R C. Extending martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.'s. Electron J Probab, 1999, 4(6): 1-29 [10] Dalang R C, Quer-Sardanyons L. Stochastic integrals for spde's: A comparison. Expo Math, 2011, 29(1): 67-109 [11] Denk G, Meintrup D, Schaffer S. Modeling, simulation and optimization of integrated circuits. Intern Ser Numer Math, 2004, 146: 251-267 [12] Djellout H, Guillin A, Wu L. Transportation cost-information inequalities and applications to random dynamical systems and diffusions. Ann Probab, 2004, 32(3): 2702-2732 [13] Feyel D, Üstünel A S. Monge-Kantorovitch measure transportation and Monge-Ampère equation on Wiener space. Probab Th Rel Fields, 2004, 28(3): 347-385 [14] Gozlan N. Transport inequalities and concentration of measure. ESAIM: Proceedings and Surveys, 2015, 51(89): 1-23 [15] Herrell R, Song R, Wu D, Xiao Y. Sharp space-time regularity of the solution to stochastic heat equation driven by fractional-colored noise. Stoch Anal Appl, 2020, 38(4): 747-768 [16] Hu S, Li Y, Wang X. Central limit theorem and moderate deviations for a class of semilinear stochastic partial differential equations. Acta Math Sci, 2020, 40(5): 1477-1494 [17] Khoshnevisan D, Sarantsev A. Talagrand concentration inequalities for stochastic partial differential equations. Stoch PDE: Anal Comp, 2019, 7: 679-698 [18] Kou S C, Xie X. Sunney: Generalized langevin equation with fractional gaussian noise: subdiffusion within a single protein molecule. Phys Rev Lett, 2004, 93(18): 180603 [19] Ledoux M.The concentration of Measure Phenomenon. Mathematical Surveys and Monographs, 89. Providence, RI: American Mathematical Society, 2001 [20] Li Y, Wang X. Transportation cost-information inequality for stochastic wave equation. Acta Appl Math, 2020, 169: 145-155 [21] Ma Y, Wang R. Transportation cost inequalities for stochastic reaction-diffusion equations with Lévy noises and non-Lipschitz reaction terms. Acta Mathematica Sinica, Eng Series, 2020, 36(2): 121-136 [22] Marton K. A measure concentration inequality for contracting Markov chains. Geom Funct Anal, 1996, 6(3): 556-571 [23] Nualart D.The Malliavin Calculus and Related Topics. Berlin: Springer, 2006 [24] Otto F, Villani C. Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J Funct Anal, 2000, 173(2): 361-400 [25] Shang S, Wang R. Transportation inequalities under uniform metric for a stochastic heat equation driven by time-white and space-colored noise. Acta Appl Math, 2020, 170: 81-97 [26] Shang S, Zhang T. Quadratic transportation cost inequalities under uniform distance for stochastic equations driven by multiplicative space-time white noise. Electron J Probab, 2019, 24(129): 1-15 [27] Talagrand M. Transportation cost for Gaussian and other product measures. Geom Funct Anal, 1996, 6: 587-600 [28] Üstünel A S. Transportation cost inequalities for diffusions under uniform distance. Stochastic Analysis and Related Topics. Springer Proceedings in Mathematics and Statistics, 2012, 22: 203-214 [29] Villani C.Optimal Transport: Old and New. A Series of Comprehensive Studies in Mathematics, Vol 338. Berlin: Springer, 2009 [30] Walsh J.An Introduction to Stochastic Partial Differential Equations. École d'été de Probabilités St Flour XIV, Lect Notes Math, Vol 1180. Berlin: Springer, 1986 [31] Wang F Y, Zhang T. Talagrand inequality on free path space and application to stochastic reaction diffusion. Acta Math Appl Sin Engl Ser, 2020, 36: 253-261 [32] Wu L, Zhang Z. Talagrand's $T_2$-transportation inequality and log-Sobolev inequality for dissipative SPDEs and applications to reaction-diffusion equations. Chinese Ann Math Ser B, 2006, 27(3): 243-262 |