[1] Bergh J, Löfström J. Interpolation Spaces. Berlin, Heidelberg, New York: Springer, 1976
[2] Brenner P, Wahl W V. Global classical solutions of nonlinear wave equations. Math Z, 1981, 176: 87-121
[3] Chen S, Guo B. On the cauchy problem of the Ginzburg-Landau equations for atomic Fermi gases near the BCS-BEC crossover. J Partial Differ Equ, 2009, 22(3): 218-133
[4] Chen S, Guo B. Solution theory of the coupled time-dependent Ginzburg-Landau equations. Int J Dyn Syst Differ Equ, 2009, 2(1/2): 1-20
[5] Chen S, Guo B. Existence of the weak solution of coupled time-dependent Ginzburg-Landau equations. J Math Phys, 2010, 51(3): 033507
[6] Chen S, Guo B. Classical solutions of time-dependent Ginzburg-Landau theory for atomic Fermi gases near the BCS-BEC crossover. J Differ Equ, 2011, 251(6): 1415-1427
[7] Chen S, Guo B. The existence of global solution of the Ginzburg-Landau equations for atomic Fermi gases nears the BCS-BC crossover (in Chinese). Acta Math Sci, 2011, 31A(5): 1359-1368
[8] de Gennes P G. Superconductivity of Metals and Alloys. Reading, MA: Addisom-Wesley, 1998; Abrikosov A A. Fundamentals of the Theory of Metals. New York: Elsevier-Science Ltd, 1988
[9] Deoring C R, Gibbon J D, Levermore C D. Weak and strong solutions of the complex Ginzburg-Landau equation. Physica D, 1994, 71: 285-318
[10] Drechsler M, Zwerger W. Crossover from BCS-superconductivity to Bose-condensation. Ann Phys 1992, 504(1): 15-23
[11] Hayashi N. Classical solutions of nonlinear Schrödinger equations. Manuscripta Math, 1986, 55: 171-190
[12] Henry D. Geometric Theory of Semilinear Parabolic Equations. Lect Notes in Math 840. Springer-Verlag, 1981
[13] Machida M, Koyama T. Time-dependent Ginzburg-Landau theory for atomic Fermi gases near the BCSBEC crossover. Phy Rev A, 2006, 74: 033603
[14] Pecher H. Lp-Abschätzungen und klassische Lösungen fü r nichtlineare Wellengleichungen, I. Math Z, 1976, 150: 159-183, and II. Manuscripta Math, 1977, 20: 227-244
[15] Pecher H, Wahl W V. Time dependent nonlinear Schrödinger equations. Manuscripta Math, 1979, 27: 125-157
[16] Reed M. Abstract non-Linear Wave Equations. Lecture Notes in Mathematics 507. Berlin, Heidelberg, New York: Springer, 1976
[17] Sa de Melo C A R, Randeria M, Engelbrecht J R. Crossover from BCS to Bose superconductivity: transition temperature and time-dependent Ginzburg-Landau theory. Phys Rev Lett, 1993, 71: 3202-3205
[18] Huang S, Peter Taká?. Global smooth solutions of the complex Ginzburg-Landau equation and their Dynamical properties. Dis Contin Dyn Syst, 1999, 5(4): 825-848
[19] Triebel H. Interpolation Theory, Function Spaces, Differential Operators. Amsterdam, New York, Oxford: North Holland, 1978
[20] Tsutsumi M, Hayashi N. Classical solutions of nonlinear Schrödinger equations in higher dimensions. Math Z, 1981, 177: 217-234
[21] Wang X, Gao F. Moderate deviations from hydrodynamic limit of a Ginzburg-Landau model. Acta Math Sci, 2006, 26(4): 691-701
[22] Wen H, Ding S. Vortex dynamics of the anisotropic Ginzburg-Landau equation. Acta Math Sci, 2010, 30B(3): 949-962 |