数学物理学报(英文版) ›› 2013, Vol. 33 ›› Issue (4): 1153-1176.doi: 10.1016/S0252-9602(13)60071-5

• 论文 • 上一篇    下一篇

WELL-POSEDNESS IN CRITICAL SPACES FOR THE FULL COMPRESSIBLE MHD EQUATIONS

边东芬*|郭柏灵   

  1. The Graduate School of China Academy of Engineering Physics, Beijing 100088, China; Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
  • 收稿日期:2011-10-13 修回日期:2012-01-06 出版日期:2013-07-20 发布日期:2013-07-20
  • 通讯作者: 边东芬,bian_dongfen@mail.com E-mail:dongfen2005@yahoo.com.cn; bian_dongfen@mail.com;gbl@iapcm.ac.cn

WELL-POSEDNESS IN CRITICAL SPACES FOR THE FULL COMPRESSIBLE MHD EQUATIONS

 BIAN Dong-Fen*, GUO Bo-Ling   

  1. The Graduate School of China Academy of Engineering Physics, Beijing 100088, China; Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
  • Received:2011-10-13 Revised:2012-01-06 Online:2013-07-20 Published:2013-07-20
  • Contact: BIAN Dong-Fen,bian_dongfen@mail.com E-mail:dongfen2005@yahoo.com.cn; bian_dongfen@mail.com;gbl@iapcm.ac.cn

摘要:

In this paper we prove local well-posedness in critical Besov spaces for the full compressible MHD equations in RN, N ≥2, under the assumptions that the initial density is bounded away from zero. The proof relies on uniform estimates for a mixed hyperbolic/parabolic linear system with a convection term.

关键词: full compressible MHD equations, Besov spaces, critical spaces, Littlewood-Paley theory, local well-posedness

Abstract:

In this paper we prove local well-posedness in critical Besov spaces for the full compressible MHD equations in RN, N ≥2, under the assumptions that the initial density is bounded away from zero. The proof relies on uniform estimates for a mixed hyperbolic/parabolic linear system with a convection term.

Key words: full compressible MHD equations, Besov spaces, critical spaces, Littlewood-Paley theory, local well-posedness

中图分类号: 

  • 76W05