[1] Nash J. Le probl`eme de Cauchy pour les ´equations diff´erentielles d’un fluide g´en´eral. Bull Soc Math France,
1962, 90: 487–497
[2] Itaya N. On initial value problem of the motion of compressible viscous fluid, especially on the problem of uniqueness. J Math Kyoto Univ, 1976, 16: 413–427
[3] Matsumura A, Nishida T. The initial value problem for the equations of motion of viscous and heatconductive
gases. J Math Kyoto Univ, 1980, 20: 67–104
[4] Chen Q L, Miao C X, Zhang Z F. On the well-posedness for the viscous shallow water equations. SIAM J Math Anal, 2008, 40: 443–474
[5] Danchin R. Local theory in critical spaces for compressible viscous and heat-conductive gases. Comm Partial Differ Equ, 2001, 26: 1183–1233
[6] Danchin R. Global existence in critical spaces for flows of compressible viscous and heat-conductive gases. Arch Rational Mech Anal, 2001, 160: 1–39
[7] Danchin R. Global existence in critical spaces for compressible Navier-Stokes equations. Invent Math Anal, 2000, 141: 579–614
[8] Danchin R. On the uniqueness in critical spaces for compressible Navier-Stokes equations. Nonlinear Differ Equ Appl, 2005, 12: 111–128
[9] Danchin R. Well-posedness in critical spaces for barotropic viscous fluids with truly not constant density. Comm Partial Differ Equ, 2007, 32: 1373–1397
[10] Danchin R. Density-dependent incompressible viscous fluids in critical Spaces. Proc Roy Soc Edinburgh Sect A, 2003, 133: 1311–1334
[11] Kobayashi T, Shibata Y. Dacay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in R3. Comm Math Phys, 1999, 200: 621–660
[12] Hoff D, Zumbrun K. Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ Math J, 1995, 44: 603–676
[13] Bresch D, Desjardins B. Existence of global weak solutiona for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Commun Math Sci, 2003, 238: 211–223
[14] Bresch D, Desjardins B, Lin C K. On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Comm Partial Differ Equ, 2003, 28: 843–868
[15] Lion P L. Mathematical Topics in Fluid Mechanics, Vol 2. Oxford Lecture Series in Mathematics and its Applications. Oxford: Clarendon Press, 1998
[16] Mellet A, Vasseur A. On the barotropic compressible Navier-Stokes equations. Comm Partial Differ Equ, 2007, 32: 431–452
[17] Bresch D, Desjardins B. M´etivier G. Recent mathematical results and open problems about shallow water
systems//Analysis and Simulation of Fluid Dynamics. Adv Math Fluid Mech. Basel: Birkh¨auser, 2007: 15–31
[18] Haspot B. Cauchy problem for the viscous shallow water equations with a term of capillarity. Math Models Methods Appl Sci, 2010, 20(7): 1049–1087
[19] Wang W K, Xu C J. The Cauchy problem for viscous shallow water equations. Rev Mat Iberoamericana, 2005, 21: 1–24
[20] Fan J S, Zhou Y. A blow-up criterion of strong solutions to the compressible viscous heat-conductive flows with zero heat conductivity. Acta Appl Math, 2011, 116: 317–327
[21] Fan J S, Ni L D, Zhou Y. Local well-posedness for the cauchy problem of the MHD equations with mass diffusion. Math Methods Appl Sci, 2011, 34(7): 792–797
[22] Gerebeau J F, Bris C L, Lelievre T. Mathematical Methods for the Magnetohydrodynamics of Liquid Metals. Oxford: Oxford University Press, 2006
[23] Li T, Qin H U. Physics and Partial Differential Equations, Vol I. 2nd ed. Beijing: Higher Education Press, 2005
[24] Moreau R. Magnetohydrodynamics. Dordredht: Kluwer Academic Publishers, 1990
[25] Mohamed A A, Jiang F, Tan Z. Decay estimates for isentropic compressible magnetohydrodynamic equations
in bounded domain. Acta Math Sci, 2012, 32B(6): 2211–2220
[26] Barker B, Lafitte O, Zumbrun K. Existence and stability of viscous shock profiles for 2-D isentropic MHD with infinite electrical resistivity. Acta Math Sci, 2010, 30B(2): 447–498
[27] Chen G Q, Wang D H. Global solutions of nonlinear magnetohydrodynamics with large initial data. J Differ Equ, 2002, 182: 344–376
[28] Chen G Q, Wang D H. Existence and continuous dependence of large solutions for the magnetohydrodynamics
equations. Z Angew Math Phys, 2003, 54: 608–632
[29] Hoff D, Tsyganov E. Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics. Z Angew Math Phys, 2005, 56: 215–254
[30] Kato T. Quasi-linear equations of evolution, with applications to partial differential equations//Lecture Notes in Mathematics, Vol 448. Berlin: Springer-Verlag, 1975
[31] Kawashima S, Okada M. Smooth global solutions for the one-dimensional equations in magnetohydrodynamics.
Proc Japan Acad Ser A Math Sci, 1982, 58: 384–387
[32] Chen Q L, Miao C X, Zhang Z F.Well-posedness in critical spaces for compressible Navier-Stokes equations
with density dependent viscosities. Rev Mat Iberoamericana, 2010, 26: 915–946
[33] Zhou Y, Xin Z P, Fan J S. Well-posedness for the density-dependent incompressible Euler equations in the
critical Besov spaces (in Chinese). Sci Sin Math, 2010, 40(10): 959–970
[34] Bian D F, Yuan B Q. Local well-posedness in critical spaces for compressible MHD equations. preprint.
[35] Bian D F, Yuan B Q. Well-posedness in super critical Besov spaces for compressible MHD equations. Int
J Dynamical Systems Differ Equ, 2011, 3: 383–399
[36] Xin Z P. Blow up of smooth solutions to the compressible Navier-Stokes equation with compact density. Commun Pure Appl Anal, 1998, 51: 229–240
[37] Cho Y, Jin B J. Blow-up of viscous heat-conducting compressible flows. J Math Anal Appl, 2006, 320(2): 819–826
[38] Rozanova O. Blow up of smooth solutions to the compressible Navier-Stokes equations with the data highly
decreasing at infinity. J Differ Equ, 2008, 245: 1762–1774
[39] Fujita H, Kato T. On Navier-Stokes initial value problem. I. Arch Rational Mech Anal, 1964, 16: 269–315
[40] Meyer A. Wavelets, Paraproducts and Navier-Stokes equations//Current Developments in Mathematics. Cambridge: International Press, 1996
[41] Cannone M. Ondelettes, Paraproduits et Navier-Stokes equation//Nouveaux Essais. Paris: Diderot Éditeurs, 1995
[42] Cannone M. Harmonic analysis tools for solving the incompressible Navier-Stokes equations//Handbook of Mathematical Fluid Dynamics, Vol 3. Amsterdam: North-Holland, 2004
[43] Chemin J Y, Lerner N. Flot de champs de vecteurs non lipschitziens et ´equations de Navier-Stokes. J Differ Equ, 1992, 121: 314–328
[44] Chemin J Y. Perfect Incompressible Fluids. New York: Oxford University Press, 1998
[45] Chemin J Y. Th´eor`emes d’unicit´e pour le syst`eme de Navier-Stokes tridimensionnel. J d’Analyse Math,
1999, 77: 27–50 |