具有Crowley-Martin型功能反应的捕食者-食饵模型的复杂动力学和随机敏感性分析
Complex Dynamics and Stochastic Sensitivity Analysis of a Predator-Prey Model with Crowley-Martin Type Functional Response
Received: 2019-10-29
Fund supported: |
|
作者简介 About authors
王腾飞,E-mail:
冯涛,E-mail:
Predator-prey interactions serve a pivotal role in protecting species diversity. In this study, the parameter $λ$ is presented to show the stochastic dynamics of a predator-prey model. The results show that the predator population tends to become extinct if $λ$ < 0. Furthermore, the solution of the prey population converges weakly to an invariant probability distribution. If $λ$>0, we find that the stochastic system admits a unique ergodic stationary distribution. In addition, stochastic sensitivity analysis is proposed to study the effects of noise on the dynamics of predator-prey populations. Our findings suggest that small-intensity noise can suppress population size enlargement, while large-intensity noise can lead to the extinction of populations.
Keywords:
本文引用格式
王腾飞, 冯涛, 孟新柱.
Wang Tengfei, Feng Tao, Meng Xinzhu.
1 引言
功能反应在捕食者-食饵系统[9-18] 和流行病系统[19-21] 的研究中起着非常重要的作用. 它表示捕食者在单位时间内杀死食饵的数量, 描述了不同营养水平之间的生物转移量. 1975年, Crowley和Martin[22]提出了Crowley-Martin型功能反应函数
其中,
表 1 系统(1.1)中参数的生物意义
符号 | 生物学意义 |
在没有捕食的情况下, 食饵种群的内在增长率 | |
攻击系数 | |
处理时间 | |
捕食者个体之间的干扰程度 | |
在没有捕食的情况下, 捕食者种群的内在增长率 | |
捕食的转化率 | |
布朗运动 |
注意到, 对于系统(1.1)吕等[29]给出了两个种群的持久性. 特别地, 他们指出该系统存在一个遍历的平稳分布. 然而, 有两个关键问题被忽视了: (ⅰ) 捕食者灭绝的条件是什么? 当捕食者的数量趋于灭绝时, 食饵的数量如何变化? (ⅱ) 捕食者-食饵系统的动力学能像确定性系统那样通过阈值来区分吗?
该文旨在改进和优化吕等[29]的结果, 提出了一个阈值参数来研究随机系统(1.1) 的动力学. 结果表明: (ⅰ) 当
2 长期的随机动力学
引理2.1[34] 考虑以下一维模型
(ⅰ) 当
(ⅱ) 当
为了研究随机系统(1.1)的动力学, 定义
令
定理2.2 假设
(ⅰ) 当
(ⅱ) 当
证 (Ⅰ) 情形
由此可见
因为
则有
根据随机比较定理有
令
对
选择
假设
根据Portmanteau定理,
因为
由此可见
根据(2.7), (2.9)和(2.10)式得
因为
(Ⅱ) 情形
其中
对方程(2.11)关于
因为
和
可以推导得
剩下的证明类似于文献[34]中定理2.2的标准论证.
注2.3(生物学意义) (ⅰ) 李雅普诺夫指数
接下来, 给出两个例子来验证定理2.1的结果, 并说明随机噪声对捕食者-食饵种群相互作用的影响. 针对随机模型(1.1)和相应的确定型模型(即
例2.4 首先, 研究较小强度的噪声对随机系统(1.1)的动力学影响. 令
图 1
图 1
较小强度噪声对随机模型(1.1)的动力学影响, 其中图中红色实线表示相应确定性模型(1.1)的解. (a) 灰色实线为随机模型(1.1)解
例2.5 现在, 研究较大强度的噪声对随机系统(1.1)的动力学影响. 令
图 2
图 2
较大强度噪声对随机模型(1.1)的动力学影响, 其中图中红色实线表示相应确定性模型(1.1)的解. (a) 灰色实线为随机模型(1.1)解
我们总结例2.4和例2.5的生物学意义如下.
2) 大的噪声导致种群灭绝. 由图 2可以看出, 确定性模型的解是持久的, 而当噪声强度较大时, 随机模型的解
3 随机敏感性分析
接下来, 参考吕等在文献[29]中的参数, 即
定理3.1 (平衡点的存在性和稳定性) 根据上述参数, 确定性模型(3.1)有三个边界平衡点和一个内部平衡点, 即
(1) 确定型模型(3.1)在点
(2) 确定性模型(3.1)在点
(3) 确定性模型(3.1)在点
(4) 确定性模型(3.1)在点
证 确定性模型(3.1)的平衡点应满足以下条件
通过解方程(3.2), 可知确定性模型(3.1)有三个边界平衡点
图 3
图 3
确定性模型(3.1)平衡点的存在性, 参数:
下面分析确定性模型(3.1)平衡点的稳定性. 为了方便研究, 设为模型(3.1)对应的平衡点为
因此, 确定性模型(3.1)在
现在使用文献[35]中的方法对随机模型(1.1)进行随机敏感性分析, 该方法由与噪声强度
式中,
强制系统(3.3)的随机轨迹离开了一个确定性吸引子, 并形成一个相应的具有平稳概率分布
为了近似
其中,
该矩阵描述了随机系统(3.3)在确定性平衡点
式中,
现在得到了置信椭圆方程的标准形式, 为了简单起见, 令
定理3.2 根据上述参数, 随机模型(1.1)的置信椭圆方程为
其中
证 定义
式中, 雅可比矩阵
通过解方程(3.9), 可得随机敏感性矩阵在
则置信概率为
定理3.2证明完毕.
接下来, 给出一个例子来说明上面的结果.
例3.3 使用参数
图 4
图 4
平衡点和置信椭圆. (a) 1000个随机变量在时间
(1) 在没有噪声的情况下, 置信椭圆变为一个点, 即确定性模型(3.1)的稳定内部平衡点
(2) 随着置信概率的增加(从95%增加到99%), 置信椭圆中包含的样本也越来越多. 这说明在实际应用中, 要使统计结果更加准确, 应选择合理的置信概率.
4 结论
文章研究了一类具有Crowley-Martin型函数响应的随机捕食者-食饵模型. 结果表明, 捕食者-食饵模型的随机动力学可以通过一个关键参数
此外, 提出了随机敏感性分析方法来观察噪声对随机捕食者-食饵系统动力学的影响. 研究结果表明, 较小强度的噪声可以抑制种群规模的扩大, 而较大强度的噪声则会导致种群的灭绝. 与此同时, 通过Matlab数值模拟得到如下结果: 在没有噪声的情况下, 置信椭圆变成为一个点, 这是确定性模型(3.1)的稳定的内部平衡点
参考文献
Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey
,DOI:10.1016/j.mbs.2016.02.003 [本文引用: 1]
Traveling waves for a generalized Holling-Tanner predator-prey model
,
Dynamics of a diffusion reaction prey-predator model with delay in prey: Effects of delay and spatial components
,DOI:10.1016/j.jmaa.2018.01.046
A two-patch prey-predator model with predator dispersal driven by the predation strength
,
Refuge-mediated predator-prey dynamics and biomass pyramids
,
Dynamical analysis of a stage-structured predator-prey model with cannibalism
,
一类带治疗项的非局部扩散SIR传染病模型的行波解
,DOI:10.3969/j.issn.1003-3998.2020.01.008
Traveling wave solutions of a nonlocal spreading SIR infectious disease model with treatment term
DOI:10.3969/j.issn.1003-3998.2020.01.008
一类具有随机扰动的非自治SIRI流行病模型的动力学行为
,DOI:10.3969/j.issn.1003-3998.2020.01.017 [本文引用: 1]
Dynamic behavior of a nonautonomous SIRI epidemic model with random perturbations
DOI:10.3969/j.issn.1003-3998.2020.01.017 [本文引用: 1]
Dynamic threshold probe of stochastic SIR model with saturated incidence rate and saturated treatment function
,DOI:10.1016/j.physa.2019.122300 [本文引用: 1]
Progressive dynamics of a stochastic epidemic model with logistic growth and saturated treatment
,DOI:10.1016/j.physa.2019.122649
Analysis of SIR epidemic models with nonlinear incidence rate and treatment
,
Global dynamics of an infinite dimensional epidemic model with nonlocal state structures
,
Qualitative analysis of stochastically perturbed SIRS epidemic model with two viruses
,
A stochastic SIRS epidemic model with infectious force under intervention strategies
,
Stationary distribution of a stochastic delayed SVEIR epidemic model with vaccination and saturation incidence
,DOI:10.1016/j.physa.2018.08.054
Ergodic stationary distribution and extinction of a stochastic SIRS epidemic model with logistic growth and nonlinear incidence
,
The threshold of a deterministic and a stochastic SIQS epidemic model with varying total population size
,
一类带有交叉扩散的捕食-食饵模型的正解
,DOI:10.3969/j.issn.1003-3998.2019.03.014 [本文引用: 1]
Positive solution of a predator-prey model with cross diffusion
DOI:10.3969/j.issn.1003-3998.2019.03.014 [本文引用: 1]
Persistence and extinction of a modified Leslie-Gower Holling-type Ⅱ stochastic predator-prey model with impulsive toxicant input in polluted environments
,DOI:10.1016/j.nahs.2017.08.001 [本文引用: 1]
Stability for a new discrete ratio-dependent predator-prey system
,
具周期性潜伏期的SEIR传染病模型的动力学
,DOI:10.3969/j.issn.1003-3998.2020.02.023 [本文引用: 1]
Dynamics of a SEIR infectious disease model with periodic incubation periods
DOI:10.3969/j.issn.1003-3998.2020.02.023 [本文引用: 1]
Functional responses and interference within and between year classes of a dragony population
,
Periodic behavior in a FIV model with seasonality as well as environment fluctuations
,DOI:10.1016/j.jfranklin.2017.08.034 [本文引用: 1]
Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis
,
Dynamics of stage-structure predator-prey systems under density-dependent effect and mortality
,DOI:10.1016/j.ecocom.2020.100812
Global analysis of a stochastic TB model with vaccination and treatment
,
Average break-even concentration in a simple chemostat model with telegraph noise
,DOI:10.1016/j.nahs.2018.03.007
Stationary distribution and persistence of a stochastic predator-prey model with a functional response
,
Analysis of excitability for the FitzHugh-Nagumo model via a stochastic sensitivity function technique
,DOI:10.1103/PhysRevE.83.061109 [本文引用: 2]
Analysis of nonlinear stochastic oscillations in the biochemical Goldbeter model
,DOI:10.1016/j.cnsns.2019.02.008
Stochastic sensitivity and variability of glycolytic oscillations in the randomly forced Sel'kov model
,
Analysis of noise-induced phenomena in the nonlinear tumor-immune system
,
Conditions for permanence and ergodicity of certain stochastic predator-prey models
,
Confidence domains in the analysis of noise-induced transition to chaos for Goodwin model of business cycles
,
Sensitivity and chaos control for the forced nonlinear oscillations
,
The asymptotic behavior of a stochastic Predator-Prey system with Holling Ⅱ functional response
,
Dynamics of a stochastic predator-prey system with Beddington-DeAngelis functional response
,
On the dynamics of Predator-Prey models with the Beddington-DeAngelis functional response
,
Stochastic hepatitis C virus system with host immunity
,
/
〈 | 〉 |