[1]Hethcote H W.A thousand and one epidemic models. In: S A Levin, ed.Frontiers in Mathematical Biology, Lecture Notes in Biomathematics 100, Berlin/Heidelberg, New York: SpringerVerlag, 1994. 504-515
[2]Anderso R M,May R M.Infectious Disease of Humans,Dynamics and Control.London:Oxford University Press, 1991
[3]Bailey N J T. The Mathematical Theory of Infectious Disease and Its Applications. London: Griffin, 1975
[4]Diekmann O,Hecsterbeck J A P,Metz J A J.The legacy of Kermack and Mckendrick.In:D Mollision,ed.Epidemic Models: Their Structure and Relation to Dat. Cambridge: Cambridge University Press, 1994
[5]Hadeler K P, Freedman H I. Predatorprey population with parasitic infection. J Math Biol, 1989, 27: 609-631
[6]Chattopadhyay J, Arino O. A predatorprey model with disease in the prey. Nonlinear Anal. 1999, 36: 749-766
[7]Venturino E. The influence of disease on LotkaVolterra system. Rockymount. J Math, 1994, 24: 389-402
[8]Xiao Y N, Chen L S. Modeling and analysis of a predatorprey model with disease in the prey. Math Biosci,2001, 171(1): 59-82
[9]Holmes J C, Bethel W M. Modification of intermediate host behavior by parasites. In: E V Canning, C A Wright, eds. Behavioural Aspects of Parasite Transmission Zool f Linnean Soc, 1972,51(1): 123-149
[10]Peterson R O, Page R E. Wolf density as a predictor of predator rate. Swedish Wildlife Research Suppl,1987, 1: 771-773
[11]Wang W D, Chen L S. A predatorprey system with stage structure for predator. Comp Math Appl, 1997,33(8): 83-91
[12]Zhao T, Kuang Y, Smith H L. Global existence of periodic solution in a class delayed Gausstype predatorpreysystems. Nonlinear Anal, 1997,28: 1373-1394
[13]Anderson R M, May R M. The population dynamics of microparasites andtheir intervebrates hosts. Proc Roy Soc Lond B, 1981, 291: 451-463
[14]Yang X. Chen L S, Chen J F. Permanence and positive periodic solution for the singlespecies nonautonomousdelay diffusive model. Comput Math Appl, 1996, 32: 109-116
[15]Gopalsamy K. Stability and Oscillation in Delay Differential Equations of Population Dynamics. A Dordrecht, The Netherlands: Kluwer Academic Publishers, 1992
[16]Freedman H I, Sree Hari Rao V. The tradeoff between mutual interference and time lags in predatorprey systems. Bull Math Biol, 1983, 45: 991-1003
[17]Hale J K. Theory of Functional Differential Equations. New York: SpringerVerlag, 1977
[18]Hassard B D, Kazarinoff N D, Wan Y N. In: Theory and Application of Hopf Bifurcation, eds. Cambridge: Cambridge University, 1981 |