数学物理学报 ›› 2024, Vol. 44 ›› Issue (5): 1205-1215.
收稿日期:
2023-10-22
修回日期:
2024-02-21
出版日期:
2024-10-26
发布日期:
2024-10-16
通讯作者:
*段誉, E-mail: 基金资助:
Received:
2023-10-22
Revised:
2024-02-21
Online:
2024-10-26
Published:
2024-10-16
Supported by:
摘要:
该文研究如下 Klein-Gordon-Maxwell 系统
中图分类号:
孙歆, 段誉. 次线性 Klein-Gordon-Maxwell 系统解的多重性[J]. 数学物理学报, 2024, 44(5): 1205-1215.
Sun Xin, Duan Yu. Multiplicity of Solutions for Sublinear Klein-Gordon-Maxwell Systems[J]. Acta mathematica scientia,Series A, 2024, 44(5): 1205-1215.
[1] |
Benci V, Fortunato D. Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations. Rev Math Phys, 2002, 14(4): 409-420
doi: 10.1142/S0129055X02001168 |
[2] | Benci V, Fortunato D. The nonlinear Klein-Gordon equation coupled with the Maxwell equations. Nonlinear Anal, 2001, 47(9): 6065-6072 |
[3] | Wang L X, Xiong C L, Zhao P P. On the existence and multiplicity of solutions for nonlinear Klein-Gordon-Maxwell systems. Electron J Qual Theory Differ Equ, 2023, 19: 1-18 |
[4] | Liu X Q, Kang J C, Tang C L. Existence and concentration of positive solutions for Klein-Gordon-Maxwell system with asymptotically linear nonlinearities. Journal of Mathematical Physics, 2022, 63(4): 041513 |
[5] | 段誉, 孙歆. 渐近线性 Klein-Gordon-Maxwell 系统正解的存在性. 数学物理学报, 2022, 42A(4): 1103-1111 |
Duan Y, Sun X. Existence of positive solutions for Klein-Gordon-Maxwell systems with an asymptotically linear nonlinearity. Acta Math Sci, 2022, 42A(4): 1103-1111 | |
[6] | He X M. Multiplicity of solutions for a nonlinear Klein-Gordon-Maxwell system. Acta Appl Math, 2014, 130(1): 237-250 |
[7] | D'Aprile T, Mugnai D. Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2004, 134(5): 893-906 |
[8] | Wen X P, Chen C F. Existence and asymptotic behavior of nontrivial solutions for the Klein-Gordon-Maxwell system with steep potential well. Electron J Qual Theory Differ Equ, 2023, 17: 1-18 |
[9] | Che G F, Chen H B. Existence and Multiplicity of nontrivial solutions for Klein-Gordon-Maxwell system with a parameter. J Korean Math Soc, 2017, 54(3): 1015-1030 |
[10] | Ding L, Li L. Infinitely many standing wave solutions for the nonlinear Klein-Gordon-Maxwell system with sign-changing potential. Comput Math Appl, 2014, 68(5): 589-595 |
[11] | Chen S T, Tang X H. Infinitely many solutions and least energy solutions for Klein-Gordon-Maxwell systems with general superlinear nonlinearity. Comput Math Appl, 2018, 75(9): 3358-3366 |
[12] | Chen S J, Li L. Infinitely many solutions for Klein-Gordon-Maxwell system with potentials vanishing at infinity. Zeitschrift für Analysis und ihre Anwendungen, 2018, 37(1): 39-50 |
[13] | de Moura E L, Miyagaki O H, Ruviaro R. Positive ground state solutions for quasicritical Klein-Gordon-Maxwell type systems with potential vanishing at infinity. Electronic Journal of Differential Equations, 2017, 154: 1-11 |
[14] | 李易娴, 张正杰. 一类与 Klein-Gordon-Maxwell 问题有关的方程组的基态解的存在性. 数学物理学报, 2023, 43A(3): 680-690 |
Li Y X, Zhang Z J. The Existence of ground state solutions for a class of equations related to Klein-Gordon-Maxwell systems. Acta Math Sci, 2023, 43A(3): 680-690 | |
[15] |
Miyagaki O H, de Moura E L, Ruviaro R. Positive ground state solutions for quasicritical the fractional Klein-Gordon-Maxwell system with potential vanishing at infinity. Complex Variables and Elliptic Equations, 2019, 64(2): 315-329
doi: 10.1080/17476933.2018.1434625 |
[16] | Xu L P, Chen H B. Existence and multiplicity of solutions for nonhomogeneous Klein-Gordon-Maxwell equations. Electronic Journal of Differential Equations, 2015, 102: 1-12 |
[17] | Wang L X. Two solutions for a nonhomogeneous Klein-Gordon-Maxwell system. Electron J Qual Theory Differ Equ, 2019, 40: 1-12 |
[18] | Wu D L, Lin H X. Multiple solutions for superlinear Klein-Gordon-Maxwell equations. Mathematische Nachrichten, 2020, 293: 1827-1835 |
[19] | Wang L X, Chen S J. Two solutions for nonhomogeneous Klein-Gordon-Maxwell system with sign-changing potential. Electronic Journal of Differential Equations, 2018, 124: 1-21 |
[20] | Shi H X, Chen H B. Multiple positive solutions for nonhomogeneous Klein-Gordon-Maxwell equations. Applied Mathematics and Computation, 2018, 337: 504-513 |
[21] | Liu X Q, Chen S J, Tang C L. Ground state solutions for Klein-Gordon-Maxwell system with steep potential well. Appl Math Lett, 2019, 90: 175-180 |
[22] | Wang L, Tang L Q, Sun J J. Infinitely many sign-changing solutions for a kind of fractional Klein-Gordon-Maxwell system. Fractional Calculus and Applied Analysis, 2023, 26(2): 672-693 |
[23] | Liu X Q, Tang C L. Infinitely many solutions and concentration of ground state solutions for the Klein-Gordon-Maxwell system. Journal of Mathematical Analysis and Applications, 2022, 505(2): 125521 |
[24] | Gan C L, Xiao T, Zhang Q F. Improved results of nontrivial solutions for a nonlinear nonhomogeneous Klein-Gordon-Maxwell system involving sign-changing potential. Adv Differ Equ, 2020, 167: 1-16 |
[25] | Chen S J, Song S Z. Multiple solutions for nonhomogeneous Klein-Gordon-Maxwell equations on $\mathbb{R}^3$. Nonlinear Anal RWA, 2015, 22: 259-271 |
[26] | Wei C, Li A. Existence and multiplicity of solutions for Klein-Gordon-Maxwell systems with sign-changing potentials. Advances in Difference Equations, 2019, 1: 1-11 |
[27] | 谢苏静, 黄文念. 一类 Klein-Gordon-Maxwell 方程无穷多解的存在性. 高校应用数学学报: A 辑, 2018, 33A(3): 315-323 |
Xie S J, Huan W N. Existence of infinitely many solutions for a Klein-Gordon-Maxwell system. Applied Mathematics-A Journal of Chinese Universities, 2018, 33A(3): 315-323 | |
[28] | 陈丽珍, 李安然, 李刚. 带有次线性项和超线性项的 Klein-Gordon-Maxwell 系统多重解的存在性. 数学物理学报, 2017, 37A(4): 663-670 |
Chen L Z, Li A R, Li G. Existence of infinitely many solutions to a class of Klein-Gordon-Maxwell system with superlinear and sublinear terms. Acta Math Sci, 2017, 37A(4): 663-670 | |
[29] | Li L, Tang C L. Infinitely many solutions for a nonlinear Klein-Gordon-Maxwell system. Nonlinear Anal, 2014, 110: 157-169 |
[30] | Jing Y T, Liu Z L. Elliptic systems with a partially sublinear local term. J Math Study, 2015, 48(3): 290-305 |
[31] | Willem M. Minimax Theorems. Boston: Springer, 1996 |
[32] | Bonanno G. Some remarks on a three critical points theorem. Nonlinear Analysis TMA, 2003, 54(4): 651-665 |
[33] | Liu Z L, Wang Z Q. On Clark's theorem and its applications to partially sublinear problems. Ann Inst H Poincar$\acute{e}$ Anal Non-Lineaire, 2015, 32(5): 1015-1037 |
[34] | Rabinoeitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations. Providencn, RI: American Mathematical Society, 1986 |
[35] | Berestycki H, Lions P L. Nonlinear scalar field equations, I: Existence of a ground state. Arch Ration Mech Anal, 1983, 82: 313-345 |
[36] | Su J B, Wang Z Q, Willem M. Weighted Sobolev embedding with unbounded and decaying radial potentials. Journal of Differential Equations, 2007, 238(1): 201-219 |
[37] | Wang Z Q. Nonlinear boundary value problems with concave nonlinearitiesnear the origin. Nonlinear Differ Equ Appl, 2001, 8: 15-33 |
[1] | 靳振峰, 孙红蕊, 张为民. Kirchhoff 型方程正规化解的多重性及渐近行为[J]. 数学物理学报, 2024, 44(4): 871-884. |
[2] | 段雪亮, 吴晓凡, 魏公明, 杨海涛. 带临界指数的Kirchhoff型线性耦合方程组正解的多重性[J]. 数学物理学报, 2024, 44(3): 699-716. |
[3] | 付培源, 夏阿亮. 一类非局部临界椭圆方程组高能量解的多重性[J]. 数学物理学报, 2024, 44(1): 101-119. |
[4] | 温瑞江, 刘范琴, 徐子怡. 次临界 Choquard 方程的多解[J]. 数学物理学报, 2024, 44(1): 60-79. |
[5] | 范示示, 李海侠, 路银豆. 具有捕获项的 Beddington-DeAnglis 型捕食-食饵扩散模型的动力学分析[J]. 数学物理学报, 2023, 43(6): 1929-1942. |
[6] | 熊晨, 高琦. 一类耦合Ginzburg-Landau系统的局部极小解[J]. 数学物理学报, 2023, 43(2): 321-340. |
[7] | 葛斌, 袁文硕. 全空间 |
[8] | 李安然,樊丹丹,魏重庆. 临界零质量Kirchhoff型方程的解及其渐近行为[J]. 数学物理学报, 2022, 42(6): 1729-1743. |
[9] | 张鹏辉,韩志清. 一类带临界指标的非自治Kirchhoff型方程非平凡解的存在性[J]. 数学物理学报, 2022, 42(5): 1424-1432. |
[10] | 段誉,孙歆. 渐近线性Klein-Gordon-Maxwell系统正解的存在性[J]. 数学物理学报, 2022, 42(4): 1103-1111. |
[11] | 尚旭东,张吉慧. 一类非线性Choquard方程基态解的存在性[J]. 数学物理学报, 2022, 42(3): 749-759. |
[12] | 张伟强,赵培浩. 分数阶Choquard方程正解的存在性、多重性和集中现象[J]. 数学物理学报, 2022, 42(2): 470-490. |
[13] | 杜梦雪, 李方卉, 王征平. 含Hardy位势的非线性Schrödinger-Poisson方程正规化解的多重性[J]. 数学物理学报, 2022, 42(2): 442-453. |
[14] | 张传洲,李甜甜,焦樊. $B$值弱Orlicz $\alpha$拟鞅空间的原子分解[J]. 数学物理学报, 2022, 42(1): 9-17. |
[15] | 李文娟,汤获,俞元洪. 具有次线性中立项的二阶阻尼微分方程的振动准则[J]. 数学物理学报, 2022, 42(1): 58-69. |
|