[1] |
Bao W Z, Cai Y Y. Mathematical theory and numerical methods for Bose-Einstein condensation. Kinet Relat Mod, 2013, 6(1): 1-135
|
[2] |
Bartsch T, Wang Z Q. Existence and multiplicity results for some superlinear elliptic problems on $\mathbb R^N$. Comm. Partial Differential Equations, 1995, 20(9/10): 1725-1741
|
[3] |
Carrier G F. On the non-linear vibration string. Quart Appl Math, 1949, 7: 97-101
|
[4] |
D'Ancona P, Spagnolo S. Global solvability for the degenerate Kirchhoff equation with real analytic data. Invent Math, 1992, 108(1): 247-262
|
[5] |
Guo H L, Zhang Y M, Zhou H S. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Commun Pure Appl Anal, 2018, 17(5): 1875-1897
|
[6] |
Guo H L, Zhou H S. Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation. Discrete Contin Dyn Syst, 2021, 41(3): 1023-1050
|
[7] |
Guo H L, Zhou H S. A constrained variational problem arising in attractive Bose-Einstein condensate with ellipse-shaped potential. Appl Math Lett, 2019, 87: 35-41
|
[8] |
Gidas B, Ni W M, Nirenberg L. Symmetry of positive solutions of nonlinear elliptic equations in $\mathbb R^N$. Mathematical Analysis and Applications. 1981, 7: 369-402
|
[9] |
Gilbarg D, Trudinger N S, Elliptic Partial Differential Equations of Second Order. Berlin: Springer-Verlag, 1983
|
[10] |
Guo Y J, Lin C S, Wei J C. Local uniqueness and refined spike profiles of ground states for two-dimensional attractive Bose-Einstein condensates. SIAM J Math Anal, 2017, 49(5): 3671-3715
|
[11] |
Guo Y J, Seiringer R. On the mass concentration for Bose-Einstein conden-sates with attractive interactions. Lett Math Phys, 2014, 104(2): 141-156
|
[12] |
Guo Y J, Wang Z Q, Zeng X Y, Zhou H S. Properties of gound states of attractive Gross-Pitaevskii equations with multi-well potentials. Nonlinearity, 2018, 31(3): 957-979
|
[13] |
Hu T X, Tang C L. Limiting behavior and local uniqueness of normalized solutions for mass critical Kirchhoff equations. Calc Var Partial Differential Equations, 2021, 60(6): 210
|
[14] |
Kirchhoff G. Mechanik. Teubner Leipzing, 1883
|
[15] |
Kwong M K. Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\mathbb R^n$. Arch Ration Mech Anal, 1989, 105(3): 243-266
|
[16] |
Li G B, Ye H Y. On the concentration phenomenon of $L^2$-subcritical constrained minimizers for a class of Kirchhoff equations with potentials. J Differential Equations, 2019, 266(11): 7101-7123
|
[17] |
Mcleod K, Serrin J. Uniqueness of solutions of semilinear Poisson equations. Proc Natl Acad Sci USA, 1981, 78(11): 6592-6595
pmid: 16593115
|
[18] |
Pitaevskii L, Stringari S. Bose-Einstein Condensation, International Series of Monographs on Physics. The Clarendon Press, Oxford University Press, 2003
|
[19] |
Weinstein M I. Nonlinear Schrödinger equations and sharp interpolation estimates. Comm Math Phys, 1982, 87(4): 567-576
|
[20] |
Ye H Y. The existence of normalized solutions for $L^2$-critical constrained problems related to Kirchhoff equations. Z Angew Math Phys, 2015, 66(4): 1483-1497
|
[21] |
Ye H Y. The mass concentration phenomenon for $L^2$-critical constrained problems related to Kirchhoff equations. Z Angew Math Phys, 2016, 67(2): 29
|
[22] |
Zeng X Y, Zhang Y M. Existence and uniqueness of normalized solutions for the Kirchhoff equation. Appl Math Lett, 2017, 74: 52-59
|