数学物理学报 ›› 2024, Vol. 44 ›› Issue (4): 925-945.

• • 上一篇    下一篇

三维 Keller-Segel-Stokes 系统的快速信号扩散极限的收敛速率

喻婷1,*(),冬英2()   

  1. 1电子科技大学数学科学学院 成都 611731
    2西华大学理学院 成都 610039
  • 收稿日期:2023-03-07 修回日期:2023-10-16 出版日期:2024-08-26 发布日期:2024-07-26
  • 通讯作者: *喻婷, E-mail:yuting_pde@163.com
  • 作者简介:冬英, E-mail:dyyd1208@163.com
  • 基金资助:
    四川省自然科学基金(2022NSFSC1835)

The Convergence Rate of the Fast Signal Diffusion Limit for a Three-Dimensional Keller-Segel-Stokes System

Yu Ting1,*(),Dong Ying2()   

  1. 1School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731
    2School of Science, Xihua University, Chengdu 610039
  • Received:2023-03-07 Revised:2023-10-16 Online:2024-08-26 Published:2024-07-26
  • Supported by:
    Natural Science Foundation of Sichuan Province(2022NSFSC1835)

摘要:

该文通过对三维抛物-抛物型 Keller-Segel-Stokes 系统进行合适的能量迭代估计, 证明了当初始细胞质量很小时, 初边值问题的解在快速信号扩散极限过程中以代数速率收敛到相应的抛物-椭圆型 Keller-Segel-Stokes 系统.

关键词: Keller-Segel-Stokes, 快速信号扩散极限, 衰减估计, 收敛速率

Abstract:

In this paper, We demonstrates that when the initial cell mass is small, the solution of the initial boundary value problem converges at an algebraic rate to the corresponding parabolic-elliptical Keller-Segel-Stokes system during the fast signal diffusion limit process by performing appropriate energy iterative estimation on the three-dimensional parabolic-parabolic Keller-Segel-Stokes system.

Key words: Keller-Segel-Stokes, Fast signal diffusion limit, Decay estimate, Convergence rate

中图分类号: 

  • O175.23