[1] |
Biler P. Local and global solvability to some parabolic-elliptic systems of chemotaxis. Adv Math Sci Appl, 1998, 8: 715-743
|
[2] |
Biler P, Brandolese L. On the parabolic-elliptic limit of the doubly parabolic Keller-Segel system modelling chemotaxis. Stud Math, 2009, 193: 241-261
|
[3] |
Cao X, Lankeit J. Global classical small-data solutions for a three-dimensional chemo-taxis Navier-Stokes system involving matrix-valued sensitivities. Calc Var Partial Dif, 2016, 55: Article 107
|
[4] |
Duan R, Li X, Xiang Z. Global existence and large time behavior for a two-dimensional chemotaxis-Navier-Stokes system. J Diff Equ, 2017, 263: 6284-6316
|
[5] |
Duan R, Lorz A, Markowich P A. Global solutions to the coupled chemotaxis-fluid equations. Comm Part Diff Eqs, 2010, 35: 1635-1673
|
[6] |
Freitag M. The fast signal diffusion limit in nonlinear chemotaxis systems. Disc Cont Dyn Syt-B, 2020, 25: 1109-1128
|
[7] |
Herrero M A, Velazquez J J L. A blow up mechanism for a chemotaxis system. Ann Scuola Norm Sup Pisa Cl Sci, 1997, 24: 633-683
|
[8] |
Hillen T, Painter K J. A user's guide to PDE models for chemotaxis. J Math Biol, 2009, 58(1): 183-217
|
[9] |
Horstmann D. From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I. Jahresber Dtsch Math Ver, 2003, 105: 103-165
|
[10] |
Horstmann D, Wang G. Blow-up in a chemotaxis model without symmetry assumptions. European J Appl Math, 2001, 12: 159-177
|
[11] |
Horstmann D, Winkler M. Boundedness vs. blow-up in a chemotaxis system. J Diff Equ, 2005, 215(1): 52-107
|
[12] |
Jager W, Luckhaus S. On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans Amer Math Soc, 1992, 329: 819-824
|
[13] |
Ke Y, Zheng J. An optimal result for global existence in a three-dimensional Article Keller-Segel-Navier-Stokes system involving tensor-valued sensitivity with saturation. Calc Var Partial Dif, 2019, 58: Article 109
|
[14] |
Keller E F, Segel L A. Initiation of slime mold aggregation viewed as an instability. J Theor Biol, 1970, 26: 399-415
pmid: 5462335
|
[15] |
Kurokiba M, Ogawa T. Singular limit problem for the Keller-Segel system and drift-diffusion system in scaling critical spaces. J Evol Equ, 2020, 20: 421-457
|
[16] |
Lemarie Rieusset P G. Small data in an optimal Banach space for the parabolic-parabolic and parabolic-elliptic Keller-Segel equations in the whole space. Adv Differential Equations, 2013, 18: 1189-1208
|
[17] |
Li M, Xiang Z. The convergence rate of the fast signal diffusion limit for a Keller-Segel-Stokes system with large initial data. Proc R Soc Edinburgh Sect A Math, 2021, 151: 1972-2012
|
[18] |
Li M, Xiang Z, Zhou G. The stability analysis of a 2D Keller-Segel-Navier-Stokes system in fast signal diffusion. Euro J of Applied Mathematics, 2023, 34: 160-209
|
[19] |
Li X, Wang Y, Xiang Z. Global existence and boundedness in a 2D Keller-Segel-Stokes system with nonlinear diffusion and rotational flux. Commun Math Sci, 2016, 14: 1889-1910
|
[20] |
Mizoguchi N, Souplet P. Nondegeneracy of blow-up points for the parabolic Keller-Segel system. Ann I H Poincaré AN, 2014, 31: 851-875
|
[21] |
Mizukami M. The fast signal diffusion limit in a Keller-Segel system. J Math Anal Appl, 2019, 472: 1313-1330
doi: 10.1016/j.jmaa.2018.11.077
|
[22] |
Nagai T. Global existence of solutions to a parabolic system for chemotaxis in two space dimensions. Nonlinear Analysis Theory Methods Applications, 1997, 30: 5381-5388
|
[23] |
Nagai T. Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains. J Inequal Appl, 2001, 6: 37-55
|
[24] |
Nagai T, Senba T. Behavior of radially symmetric solutions of a system related to chemo-taxis. Rims Kokyuroku, 1996, 973: 32-39
|
[25] |
Nagai T, Senba T, Yoshida K. Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkcial Ekvac Ser Int, 1997, 40: 411-433
|
[26] |
Osaki K, Yagi A. Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkcial Ekvac, 2001, 44: 441-469
|
[27] |
Peng Y, Xiang Z. Global existence and boundedness in a 3D Keller-Segel-Stokes system with nonlinear diffusion and rotational flux. Z Angew Math Phys, 2017, 68: Article 68
|
[28] |
Raczynski A. Stability property of the two-dimensional Keller-Segel model. Asympt Anal, 2009, 61: 35-59
|
[29] |
Tuval I, Cisneros L, Dombrowski C, et al. Bacterial swimming and oxygen transport near contact lines. Proc Nat Acad Sci USA, 2005, 102: 2277-2282
|
[30] |
Wang Y. Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system with subcritical sensitivity. Math Models Methods Appl Sci, 2017, 27: 2745-2780
|
[31] |
Wang Y, Winkler M, Xiang Z. A smallness condition ensuring boundedness in a two-dimensional Chemotaxis-Navier-Stokes system involving Dirichlet boundary conditions for the signal. Acta Mathematica Sinica, 2022, 38: 985-1001
|
[32] |
Wang Y, Winkler M, Xiang Z. Global classical solutions in a two-dimensional chemotaxis-Navier-Stokes system with subcritical sensitivity. Ann Sc Norm Super Pisa Cl Sci, 2018, 18: 421-466
|
[33] |
Wang Y, Winkler M, Xiang Z. The small-convection limit in a two-dimensional chemotaxis-Navier-Stokes system. Math Z, 2018, 289: 71-108
|
[34] |
Wang Y, Winkler M, Xiang Z. The fast signal diffusion limit in Keller-Segel(-fluid) systems. Calc Var Partial Dif, 2019, 58: Article 196
|
[35] |
Wang Y, Xiang Z. Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation. J Diff Equ, 2015, 259: 7578-7609
|
[36] |
Wang Y, Xiang Z. Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation: the 3D case. J Diff Equ, 2016, 261: 4944-4973
|
[37] |
Winkler M. Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. J Math Pures Appl, 2013, 100: 748-767
|
[38] |
Winkler M. Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops. Comm Part Diff Eqs, 2012, 37: 319-351
|
[39] |
Winkler M. Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system. Ann I H Poincaré AN, 2016, 33: 1329-1352
|
[40] |
Winkler M. Stabilization in a two-dimensional chemotaxis-Navier-Stokes system. Arch Rational Mech Anal, 2014, 211: 455-487
|
[41] |
Winkler M. Aggregation vs. global diffusive behavior in the higher-demensional Keller-Segel model. J Diff Equ, 2010, 248: 2889-2905
|
[42] |
Wu C, Xiang Z. Saturation of the signal on the boundary: Global weak solvability in a chemotaxis-Stokes system with porous-media type cell diffusion. J Diff Equ, 2022, 315: 122-158
|
[43] |
Yu H, Wang W, Zheng S. Global classical solutions to the Keller-Segel-Navier-Stokes system with matrix-valued sensitivity. J Math Anal Appl, 2018, 461: 1748-1770
|
[44] |
Zhang Q, Li Y. Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with nonlinear diffusion. J Diff Equ, 2015, 259: 3730-3754
|
[45] |
Zheng J. Global existence and boundedness in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. Annali di Matematica Pura ed Applicata, 2022, 201: 243-288
|