[1] |
Bahouri H, Chemin J Y, Danchin R. Fourier Analysis and Nonliear Partial Differential Equations. Berlin: Springer-Verlag, 2011
|
[2] |
Chae D H. Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv Math, 2006, 203(2): 497-513
|
[3] |
Chen M T. Global well-posedness of the 2D incompressible micropolar fluid flows with partial viscosity and angular viscisiy. Acta Math Sci, 2013, 33B(4): 929-935
|
[4] |
Chen Q L, Miao C X, Zhang Z F. A new Bernstein inequality and the 2D dissipative quasigeostrophic equation. Comm Math Phys, 2007, 271: 821-838
|
[5] |
Deng L H, Shang H F. Global regularity for the micropolar Rayleigh-Bénard problem with only velocity dissipation. Proc Roy Soc Edinburgh Sect, 2022, 152A(5): 1109-1138
|
[6] |
Dong B Q, Li J N, Wu J H. Global well-posedness and large-time decay for the 2D micropolar equations. J Differential Equations, 2017, 262: 3488-3523
|
[7] |
Dong B Q, Zhang Z F. Global regularity of the 2D micropolar fluid flows with zero angular viscosity. J Differential Equations, 2010, 349(1): 200-213
|
[8] |
Dong Y, Huang Y F, Li L, Lu Q. The regularity criteria of weak solutions to 3D axisymmetric incompressible Boussinesq equations. Acta Math Sci, 2023, 43(6): 2387-2397
|
[9] |
Eringen A C. Theory of micropolar fluids. J Math Mech, 1966, 16: 1-18
|
[10] |
Galdi G P, Rionero S. A note on the existence and uniqueness of solutions of micropolar fluid equations. Internet J Engrg Sci, 1977, 15(2): 105-108
|
[11] |
Hanachi A, Houamed H, Zerguine M. On the global well-posedness of the axisymmetric viscous Boussinesq system in critical Lebesgue spaces. Discrete Contin Dyn Syst, 2020, 40(11): 6473-6506
|
[12] |
Hmidi T, Keraani S. On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity. Adv Differential Equations, 2007, 12(4): 461-480
|
[13] |
Hmidi T, Keraani S, Rousset F. Global well-posedness for a Boussinesq-Navier-Stokes system with critical dissipation. J Differential Equations, 2010, 249: 2147-2174
|
[14] |
Jin X T, Xiao Y L, Y H. Global well-posedness of the 2D Boussinesq equations with partial dissipation. Acta Math Sci, 2022, 42B(4): 1293-1309
|
[15] |
Kalita P, Łukaszewicz G. Micropolar meets Newtonian in 3D. The Rayleigh-Bénard problem for large Prandtl numbers. Nonlinearity, 2020, 33: 5686-5732
|
[16] |
Kato T, Ponce G. Commutator estimates and the Euler and Navier-Stokes equations. Comm Pure Appl Math, 1988, 41(7): 891-907
|
[17] |
Kenig C E, Ponce G, Vega L. Well-posedness of the initial value problem for the Korteweg-de Vries equations. J Amer Math Soc, 1991, 4(2): 323-347
|
[18] |
Kalita P, Lange J, Łukaszewicz G. Micropolar meets Newtonian. The Rayleigh-Bénard problem. Physical D, 2019, 392: 57-80
|
[19] |
苗长兴. 调和分析及其在偏微分方程中的应用(第二版). 北京: 科学出版社, 2004
|
|
Miao C X. Harmonic Analysis and Application to Partial Differential Equations(Second Edition). Beijing: Science Press, 2004
|
[20] |
Ning J. The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations. Comm Math Phys, 2005, 255(1): 161-181
|
[21] |
Schonbek M E, Schonbek T. Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows. Discrete Contin Dyn Syst, 2005, 13: 1277-1304
|
[22] |
Tarasińska A. Global attractor for heat convection problem in a micropolar fluid. Math Methods Appl Sci, 2005, 29: 1215-1236
|
[23] |
Triebel H. Theory of Function Spaces. Basel: Birkhäuser Verlag, 1983
|
[24] |
Wang S. Global well-posedness for the 2D micropolar Rayleigh-Bénard convection problem without velocity dissipation. Acta Math Sin, 2021, 37(7): 1053-1065
|
[25] |
Wu G, Xue L T. Global well-posedness for the 2D Bénard system with fractional diffusivity and Yudovich's type data. J Differential Equations, 2012, 253: 100-125
|
[26] |
Xu F Y, Chi M L. Global regularity for the 2D micropolar Rayleigh-Bénard convection system with the zero diffusivity. Appl Math Lett, 2020, 108: 106508
|
[27] |
Ye Z. Some new regularity criteria for the 2D Euler-Boussinesq equations via the temperature. Acta Appl Math, 2018, 157: 141-169
|
[28] |
Yuan B Q. On the regularity criteria of weak solutions to the micropolar fluid equations in Lorentz space. Proc Amer Math Soc, 2010, 138: 2025-2036
|